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Early LLMs seem to only have a System 1

(as they were developed mainly based on the so-called “Deep Learning Hypothesis”)
Source: llya Sutskever: Sequence to sequence learning with neural networks,

: : NeurlPS 2024 Test of Time Award Talk.
“The Deep Learning Hypothesis” eur est of Time Award Ta

e Human perception is fast
o Neurons fire at most 100 times a second
o Humans solve perception in 0.1 seconds

— our neurons fire 10 times, at most

Anything a human can do in 0.1 seconds, a big
10-layer neural network can do, too!

I

m words

Prompting and Fine-Tuning can (and only) yield a (better) System 1!



System 2

FAST

-
System 1: generates the proposals (used in speed chess) DANIEL
System 2: Need to “Think” more / Reason, e.g. keep track of the KAHNEMAN

INNER OF THE NOBEL PRIZE IN ECONOMICS

tree (used in competitions)



What do we mean by an LLM knows how to “Reason” ?

“Reasoning is decomposing a potentially complex task into simpler
subtasks the LM can solve more easily by itself or using tools. There
exist various ways to decompose into subtasks, such as recursion or

iteration. In that sense, reasoning is akin to planning.”

from [G. Mialon et al, Augmented Language Models: a Survey] of Meta Al.



What do we mean by an LLM knows how to “Reason” ?

[ If a train is moving at 60 mph and travels for 3 hours, how far does it go? ]

e For LLMs,
Reaso ni ng IS K \ KTO determine the distance traveled, \

Commonly def|ned as use the formula:
the process of Distance = Speed x Time
I I The train travels 180 miles. Given that the speed is 60 mph and
answerlng queStlonS the time is 3 hours:
that require complex, Distance = 60 mph 3 hours = 180 miles
mu |t| -Ste p g ene ra‘no N K j KSO[ the train travels 180 miles. /
Wlth Inte rmed late Plain response Response with intermediate
Ste pS reasoming steps
0o AS Opposed to answer A regular LLM may only provide a short answer (as shown on the left), whereas
. reasoning models typically include intermediate steps that reveal part of the
Slngle-Step FaCtuaI- thought process. (Note that many LLMs who have not been specifically
reca” type Of questions developed for reasoning tasks can also provide intermediate reasoning steps in

their answers.)



Another Example of an LLM’s Reasoning in Action

ChatGPT o1 v &, Share {{'

1) Intermediate reasoning What is the last digit of 72999

chain that is not explicitely\
shown to the user Reasoned about last digit of powers for a couple of seconds
To find the last digit of /:"‘:', note that the last digits of powers of 7 repeat in a cycle of length
4:
(last digit 7)
(last digit 9)

(last digit 3)
(last digit 1)

2) Intermediate reasoning/ Then it repeats: 7,9, 3,1,7,9, 3,1, ...
steps that are shown as
part of the answer

=999

To determine which of these four digits appears for 7777, we look at 999 mod 4:

999 =+ 4 = 249 remainder 3.

Since the remainder is 3, we take the third digit in the cycle (7,9, 3, 1), which is 3.

Hence, the last digit of 7°% is 131

The main answer/ OB PY

Here, "Reasoning" is used at two different levels:
1) processing the input and generating via multiple intermediate steps and
2) providing some sort of reasoning as part of the response to the user



Why do we want LLMs to be able to “Reason” ?

e To increase Few-shot Learning Ability
“Humans (even a small child) can learn from relatively few examples because Human can

“Reason.””” from Dr. Denny Zhou of Google DeepMind/

e To improve Out-of-distribution Robustness

Humans possess the ability to generalize beyond familiar scenarios.

e To provide Explainability
Humans are capable of providing explanations for their decisions or predictions,

whereas machines (especially deep neural networks) are often considered “black box” within
limited explainability.

Ref: Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. 2023.




Can LLMs really reason ?

There are some indications that LLMs are able to reason, including:

» High performance on various tasks requiring reasoning (Suzgun et al.,
2022)

» The ability to reason step-by-step with chain-of-thought prompting (Wei et
al., 2022)

» The reflection of human-like content effects on reasoning (Dasgupta et al.,
2022)

Ref: Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. 2023.




Can LLMs really reason ?

But there are also observations that suggest LLMs may not be capable of reasoning:
» LLMs still struggle with tasks that require complex reasoning (Valmeekam et al.,
2022; Han et al., 2022; Ruis et al., 2022)
» The performance of LLMs has been found to be sensitive to the frequency of certain
terms (Razeghi et al., 2022; Jung et al., 2022)
» Language models have been found to struggle with associating relevant information
that they have memorized (Huang et al., 2022)
» “It is not yet fully understood whether the LM is really reasoning, or simply producing a
larger context that increases the likelihood of correctly predicting the missing tokens.”
(G. Mialon et al., “Augmented Language Models: a Survey 2023).
» Misguided Attention: a suite of testing prompts: nhttps:/github.com/cpldcpu/MisquidedAttention
» Some mistakes made by LLMs seems to show they do not actually know reasoning

Ref: Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. 2023.



https://github.com/cpldcpu/MisguidedAttention

Early LLMs (ChatGPT) had Unreliable Reasoning Even On
Simple Tasks

how many r's are there in the word Probably due to tokenization!
"strawberry"? Or was it due to Sept 11 ?

@  There are two "r's" in the word "strawberry."
9.11 and 9.9, which one is larger?

9.11 and 9.9, which one is larger? .
Generated by gpt-40’s tokenizer.

®  9.11islarger than 9.9. Try it out at:
https://tiktokenizer.vercel.app/



https://tiktokenizer.vercel.app/

Do LLMs really know how to “reason” ?

Even for Frontier LLMs, their responses to certain kind of prompts seem to indicate that they
actually do NOT understand the real concept but merely perform “pattern matching”. In other
words, they are not really “reasoning”, e.g.,

« LLMs can be easily distracted by Irrelevant Context/ Content

* Premise Order matters in LLM “Reasoning”, but they should not be !

« LLMs cannot Self-correct reliably without an oracle: while allowing LLMs to review self-
generated responses can sometimes help to correct inaccurate answers, such review
may also change correct answers into incorrect ones.

References:

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schéarli, and Denny Zhou. Large
Language Models Can Be Easily Distracted by Irrelevant Context. ICML 2023.

Xinyun Chen, Ryan A Chi, Xuezhi Wang, Denny Zhou. Premise Order Matters in Reasoning with Large Language Models. ICML
2024.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language
Models Cannot Self-Correct Reasoning Yet. ICLR 2024.

Misguided Attention: a suite of testing prompts: https://github.com/cpldcpu/MisquidedAttention



https://github.com/cpldcpu/MisguidedAttention

LLM readily distracted by Irrelevant Context/ Content

Adding irrelevant contexts to GSM8K leads to 20+ points
performance drop

Lucy has $65 in the bank. She made a $15 deposit and then followed by a $4
withdrawal. Maria's monthly rentis $102\What is Lucy’s bank balance?

LLM

Lucy's bank balance is $65 + $15 - $4 5§40 = $66. The answer is $66.




LLM readily distracted by Irrelevant Context/ Content

s Simply adding irrelevant sentences can still hurt performance, e.qg.

The sky is blue. The sky is blue. The sky is blue. The sky is blue.
Lucy has $65 in the bank. The sky is blue. The grass is green. The
grass is green. She made a $15 deposit and then followed by a
$4 withdrawal. The sky is blue. The sky is blue. The sky is blue. The
sky is blue. The grass is green. The grass is green. The sky is blue.
The grass is green. What is Lucy’s bank balance?



LLM readily distracted by Irrelevant Context/ Content

BUT

Prompting LLMs to Ignore irrelevant context can take
some performance back

Lucy has $65 in the bank. She made a $15 deposit and then followed by a $4 withdrawal.

Maria's monthiy rentis $102 What is Lucy’s bank balance? Ignore irrelevant context.

LLM

Lucy has $65 in the bank. After making a $15 deposit and then a $4 withdrawal, her bank
balance is $76. * The

answer is $76.




Premise Order matters for LLMs

[Original GSM8K Problem] Thomas withdraws $1000 in 20 dollar bills
from the bank account. He loses 10 bills while getting home. After that, he
uses half of the remaining bills to pay for a bill. Thomas then triples his
money. He then converts all his bills to 5 dollar bills. How many 5 dollar
bills does he have?

[Reordered GSM8K Problem] Thomas withdraws $1000 in 20 dollar bills
from the bank account. After getting home, he uses half of the remaining
bills to pay for a bill. Thomas then triples his money. He then converts all
his bills to 5 dollar bills. He loses 10 bills while getting home. How many 5
dollar bills does he have?

About 10 points drop on solving rates across all frontier LLMs

Xinyun Chen, Ryan A Chi, Xuezhi Wang, Denny Zhou. Premise Order Matters in Reasoning with Large Language Models. ICML 2024.



Premise Order matters for LLMs

Response for original

1. Thomas withdraws $1000 in $20
bills. $1000 / $20 = 50 bills

2. He loses 10 of those bills. 50 bills
- 10 bills = 40 bills

3. He uses half of the remaining
bills to pay for a bill. Half of 40 bills
is 20 bills. 40 bills - 20 bills = 20
bills remaining

4. Thomas then triples his money.
He has 20 bills of $20, which is 20 *
$20 = $400. Tripling $400 gives us
$400 * 3 =$1200.

5. He converts all his money to $5
bills. $1200 / $5 = 240 bills

Response for reordered

1. Thomas withdraws $1000 in $20
bills from the bank. $1000 / $20 =
50 bills

2. He uses half of the remaining
bills to pay for a bill. Half of 50 bills
is 25 bills. So, he uses 25 bills and
has 25 bills left.

3. Thomas then triples his money.
Since he had 25 bills of $20 each,
he had 25 * $20 = $500 before
tripling his money. Tripling $500
gives him $500 * 3 = $1500.

4. He then converts all his bills to
$5 bills. $1500 / $5 = 300 bills

5. He lost 10 bills while getting
home. 300 bills - 10 bills = 290 bills

Xinyun Chen, Ryan A Chi, Xuezhi Wang, Denny Zhou. Premise Order Matters in Reasoning with Large Language Models. ICML 2024.



Premise Order matters for LLMs

Rules: If duve, then dax. If kere and riff, then tess. If feg and tess, then rabe. If wozz, then
riff. If rabe, then thoxe. If ag and riff and kere, then hepe. If thoxe, then vepe. If nife and hume
and ag, then dax. If feg and thoxe, then ire. If rebe and ene and heff, then kone. If ire and
dax, then wope. If tess and vepe, then nup. If rabe and vide and nife, then ag. If nup and ag
and vide, then duve. If zeck and hepe and dax, then riff. If nup, then hepe. If sene, then
hume. If hepe and tess and ag, then kere. If fum, then vide. If kere and wope, then fum. If jag
and kone, then thoxe. If fum, then wozz.

Facts: Alice is cote. Alice is kone. Alice is duve. Alice is ag. Alice is jag. Alice is tess. Alice is
riff. Alice is feg. Alice is vide.

Query: Is Alice wozz? In each step, indicate whether you are using a fact, or a rule.

Logical inference task: The rules are ordered according to their use in the
inference process, though not all rules are necessary for the query

s When the rules relevant to the query are randomly ordered, 30+ points
performance drop across all frontier LLMs !

Xinyun Chen, Ryan A Chi, Xuezhi Wang, Denny Zhou. Premise Order Matters in Reasoning with Large Language Models. ICML 2024.



LLM cannot self-correct (reasoning) reliably without an Oracle
Christina is planning a birthday party and needs .75 qift bags per invited guest,

because 1/4 of attendees don't show up. She invited 16 friends. Gift bags are $2
each. How much will she spend?

... 0.75* 12 = 9 qift bags ... Christina will spend a total of 2 *9 = $8 ... (wrong)
Review your previous answer and find problems with your answer.

Upon reviewing my previous answer, | recognize a mistake. | incorrectly stated that
Christina needs 0.75 qift bags per invited guest. The given information states that
1/4 of the attendees won't show up...

Based on the problems you found, improve your answer.

... 16 * (3/4) = 12 gift bags ... Christina will spend 12 * $2 = $24 ...

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. ICLR 2024.



LLM cannot self-correct (reasoning) reliably without an Oracle

Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts for $5.00. How
much does he spend on yogurt over 30 days?

... So, Terry spends $75 on yogurt over 30 days.

Review your previous answer and find problems with your answer.

Upon reviewing my previous answer, | realized that | made a mistake in calculating
Terry's spending on yogurt over 30 days. | incorrectly stated that Terry spends
$2.50 per day for 30 days...

Based on the problems you found, improve your answer.

... the final answer is Terry spends $37.5 on yogurt over 30 days. (wrong)

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. ICLR 2024.



Self-correcting leads to Worse Results

#calls | GSM8K CommonSenseQA  HotpotQA
Standard Prompting 1 75.9 75.8 26.0
GPT-3.5 Self-Correct (round 1) 3 75.1 38.1 25.0
Self-Correct (round 2) 5 74.7 41.8 25.0
Standard Prompting 1 95.5 82.0 49.0
GPT-4 Self-Correct (round 1) 3 91.5 79.5 49.0
Self-Correct (round 2) 5 89.0 80.0 43.0

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. ICLR 2024.



Reported Improvements need Oracle answers

GSMB8K CommonSenseQA  HotpotQA

GPT3.5 Standard Prompting 75.9 75.8 26.0
' Self-Correct (Oracle) 84.3 89.7 29.0
GPT-4 Standard Prompting 95.5 82.0 49.0
Self-Correct (Oracle) 97.5 85.5 59.0

Oracle: Let LLMs self correct only when the answer is wrong

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. ICLR 2024.



Luckily, some applications do have an Oracle available and can be leveraged !

Self-debug naturally leverage unit tests as oracle

Step 2: Code execution

Jrest (]

Executor

Unit tests
— Step 1: Code -
‘ @I 3 generation -
=i —-— Feedback

Step 3: Code explanation
D

Problem

Figure 1: SELF-DEBUGGING for iterative debugging using a large language model. At each debug-
ging step, the model first generates new code, then the code is executed and the model explains the
code. The code explanation along with the execution results constitute the feedback message, which
is then sent back to the model to perform more debugging steps. When unit tests are not available,

the feedback can be purely based on code explanation.

Xinyun Chen, Maxwell Lin, Nathanael Scharli, Denny Zhou. Teaching Large Language Models to Self-Debug.
arXiv:2302.00093 [cs.CL], 2023. ICLR 2024.



How to Teach LLMs to Reason ?



How to “teach” / lead / force LLMs to Reason ?

s Type 1 Approaches: Using some Prompting techniques for the LLM, e.g. Chain-
of-Thought (CoT) prompting

s Type 2 Approaches: Make LLM perform Search and Selection from Multiple
Candidates
=> |ncrease the WIDTH to explore solution space

s Type 3 Approaches: Make LLM perform Iterative self-improvement
=> |Increase the DEPTH to reach the final solution

Common Theme:

Make / Lead / Force LLM to use more Token Budget (i.e. “Think” more) before
reaching the final solution !
i.e. Trigger/ Make the LLM to perform “System 2” like behavior of Human!



Type 1 Approaches: Teach LLMs to Reason via Prompting



Start with a Simple, Small Example — Last Letter Concatenation

Input Output
“Elon Musk” “nk”
“Bill Gates” “Is”

“Barack Obama” ?

* Rule: Take the last letter of each word and concatenate them to form the output



Attempt to solve it by Machine Learning / Deep Learning,
say, using a Seq2Seq Encoder-Decoder ? Needs Tons of Labelled Data !

_________________________________________________________________________________________________________________

Encoder Decoder

___________________________________________________________________________________________________________________

“Bill Gates”

% Can hardly call it “Al” as it requires vast amount of labelled data and training to
do such a simple task !
% How can this problem be solved by an LLM ?



Recall: What an LLM is, What does it do ?

* LLM is a Transformer model trained to predict the Next Word, e.g.
“Al is the future”

% After trained with many sentences, e.g. text from the Internet, we can have:

4 N

LLM
N /

¢ More like training parrots to mimic human language !

- “future”

“Al is the” -




Few-shot Prompting for Last-Letter-Concatenation DID NOT WORK'!

. Q: “Elon Musk”
A “nk”

Q “ B,I’” Gates ﬁ ITRY \
gA. Is : \

- Q: “Barack Obama”

Sources:
Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurlPS 2022.
T.B. Brown et al., Language models are few-shot learners, 2020, arXiv preprint arXiv:2005.14165.



Let’'s add “reasoning process” before “answer”

Q: “Elon Musk”
A: the last letter of "Elon" is "n". the last letter of "Musk" is "K". Concatenating "n", "k"
eads to "nk".|so the output is "nk".

reasoning process

Q: “Bill Gates”
A: the last letter of "Bill" is "I". the last letter of "Gates" is "s". Concatenating "I", "s" leads
to "Is". so the output is "Is".

Q: “Barack Obama"
A:




Let’'s add “reasoning process” before “answer”

Q: “Elon Musk”
A the last letter of "Elon" is "n". the last letter of "Musk" is "k". Concatenating "n", "k"
eads to "nk".[so the output is "nk".

reasoning process

Q: “Bill Gates”
A: the last letter of "Bill" is "I". the last letter of "Gates" is "s". Concatenating "I", "s" leads
to "Is". so the output is "Is".

Q: “Barack Obama"
A: the last letter of "Barack” is "k". the last letter of "Obama" is "a". Concatenating "k", "a"




Actually, ONE demonstration is enough, like Humans !

Q: “Elon Musk”
A: the last letter of "Elon" is "n". the last letter of "Musk" is "k". Concatenating "n", "k"

leads to "nk". so the output is "nk".

Q: “Barack Obama"
A: the last letter of "Barack” is "k". the last letter of "Obama" is "a". Concatenating "k", "a"

100% accuracy with only one demonstration example !




This approach is the so-called:
Teaching LLM to Reason via Chain of Thought (CoT) Prompting

Q: “Elon Musk” A: the last letter of "Barack"
A: the last letter of "Elon" is "n". is "k". The last letter of
The last letter of "Musk" is "k". "Obama" is "a".

Concatenating "n", "k" leads to :

Concatenating "k", "a" leads
"nk". so the output is "nk" LLM :> to "ka". So, the output is

llkall.
Q: “Barack Obama”

J. Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. NeurlPS 2022.



https://arxiv.org/abs/2201.11903

Key Idea (ingredient) behind the Chain-of-Thought approach:

Derive the Final Answer through Intermediate Steps !

Ling et al 2017 in DeepMind pioneered using natural language rationale to
solve math problems by “... derive the final answer through a series of small
steps’. Trained a sequence-to-sequence model from scratch.

Problem 1:

Question: Two trains running in opposite directions cross a
man standing on the platform in 27 seconds and 17 seconds
respectively and they cross each other in 23 seconds. The ratio
of their speeds is:

Options: A) 3/7 B)3/2 C)3/88 D)3/8 E)2/2

Rationale: Let the speeds of the two trains be x m/sec and y
m/sec respectively. Then, length of the first train = 27x meters, , _ _
and length of the second train = 17 y meters. (27x + 17y) / (x + Ling et al. Program Induction by Rationale

V=23 s 27x + 17v =23x + 23v — 4dx = v — x/xv = 3/2 Generation: Learning to Solve and Explain
60rrect Option: B " ’ 7 ” Algebraic Word Problems. ACL 2017




GSMB8K: <Problem, Intermediate Steps, Answer>

Following the work by Ling et al 2017, Cobbe et al 2021 in OpenAl built a much
larger math word problem dataset (GSM8K) with natural language rationales,

and used it to finetune GPT3

Problem: Ali is a dean of a private school where he teaches one class.
John is also a dean of a public school. John has two classes in his
school. Each class has 1/8 the capacity of Ali’s class which has the
capacity of 120 students. What is the combined capacity of both schools?
Solution: Ali’s class has a capacity of 120 students. Each of John’s

Tlasses Tas a capacity of 207/8 =15 students— 1 e totaltapacity of
John’s two classes is 15 students * 2 classes = 30 students. The
combined capacity of the two schools is 120 students + 30 students =
150 students.

Final answer: 150

Cobbe et al. Training
Verifiers to Solve Math Word
Problems. arXiv:2110.14168
[cs.LG]. 2021




Show Your Work:
Scratchpads for Intermediate Computation with Language Models

Input:
29 57

Target:
<scratch>
29+5 7. C
2+5 65 (1 6 carry 1

, 86 C: 0 # ad 8 carry 0
@ 86 Nye et al. Show Your Work: Scratchpads

for Intermediate Computation with
2 >
S/ZcratCh Language Models. arXiv:2112.00114
[cs.LG], 2021
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Q: Roger has 5 tennis balls. He buys
2 more cans of tennis balls. Each can
has 3 tennis balls. How many tennis
balls does he have now?

J

-

Chain-of-Thought (CoT) Prompting

 Maih Word Problems fmustiple choice)

Q: How many keystrokes are needed
to type the numbers from 1 to 500?
Answer Choices: (a) 1156 (b) 1382 (c) 1480
(d) 1562 (e) 1788

answeris (b).

R )

Q: Sammy wanted to go to where the
people were. Where might he go?
Options: (a) race track (b) populated areas
(c) desert (d) apartment (e) roadblock

So the answer is (b).

<

Q: Yes or no: Would a pear sink in

%

A:

\_ N

_

Q: The concert was scheduled to be
on 06/01/1943, but was delayed by
one day to today. What is the date 10
days ago in MM/DD/YYYY?

So the answer is 05/23/1843.

_

Q: Is the following sentence
plausible? "Joao Moutinho caught the
screen pass in the NFC
championship."

ansvtensno

l

Human: How would you bring me
something that isn't a fruit?

Plan: 1. find(energy bar) 2.
pick(energy bar) 3. find(user) 4.

Lpul(energy bar) 5. done().

Y.

Q: Take the last letters of the words
in 'Lady Gaga" and concatenate

answer is ya.

/_

Q: A coin is heads up. Maybelle flips
the coin. Shalonda does not flip the
coin. Is the coin still heads up?

q

e S o

Figure 3: Examples of (input, chain of thought, output) triples for arithmetic, commonsense, and

symbolic reasoning benchmarks. Chains of thought are highlighted. Full prompts in Appendix G.

CSQA StrategyQA Date Sports SayCan
100 2. () S 80 100 | 100
S
E 80 80 60 20 f./‘i 80
£ 60 70 40| / 60 |
[
=240 60 20 ed 40
w2
20 [ 50 i 0 . 40 20 L i
8 62540 8 62540 8 62540 8 62540 8 62540
Model scale (# parameters in billions)
- = = Prior supervised best —— Standard prompting
- = = Human —&— Chain of thought

100x to 1000x more Data Efficient than
supervised SOTA in the literature !

Source: Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou.
Chain-of-thought prompting elicits reasoning in large language models. NeurlPS 2022



CoT Performance scales with LLM size

—— Standard prompting
—©— Chain-of-thought prompting
- Prior supervised best

LaMDA GPT PalLM . . - -
o B0 e CoT performance improves more significantly with the
1S3
g g4 increase of the model size.
BL2f
A * Better models benefit more with CoT generation
S * A drastic improvement on reasoning performance
n-‘ o .
=20 ' when the model reaches a certain scale.
5’%20 g%f
’ 0t C C . .
. * Note: these experiments used pretrained-only LLMs
LS5 | * Recent post-trained LLMs might have different
m Q . . . .
% 50 [f f scaling curves, but the main conclusions still hold.
=25
[}
0
04 8 137 04 7 175 8 62 540
Model scale (# parameters in billions)
Source:

Jason Wei et al., Chain-of-thought prompting elicits reasoning in large language models, NeurlPS 2022
Jason Wei et al., Emergent Abilities of Large Language Models, TMRL 2022.



Zero-shot CoT significantly outperforms Zero-shot

Arithmetic

SingleEq AddSub MultiArith  GSMS8K AQUA SVAMP
zero-shot 74.6/78.7 72.2/77.0 11.7122.7 10.4/12.5 22.4/22.4 58.8/58.7
zero-shot-cot 78.0/78.7 69.6/74.7 78.7/79.3 40.7/40.5 33.5/31.9 62.1/63.7
Common Sense Other Reasoning Tasks Symbolic Reasoning

Common Strategy Date Shuffled Last Letter ~ Coin Flip

SenseQA QA Understand Objects (4 words) (4 times)
zero-shot 68.8/72.6 12.7/54.3 49.3/33.6 31.3/29.7 0.2/- 12.8/53.8
zero-shot-cot 64.6/64.0 54.8/52.3 67.5/61.8 52.4/52.9 57.6/- 91.4/87.8

Source: Kojima et al., Large Language Models are Zero-Shot Reasoners, NeurlPS 2022



Inclusion of Intermediate Steps is all that matters !

ming with ifjtermediate steps (Linglet al 2017)

This Is what really matters!

% Regardless of Training, Fine-Tuning or Prompting, when provided with examples
that include Intermediate Steps, LLMs will generate responses that also include
intermediate steps !



Why Intermediate Steps are helpful ?



Reasoning: Sufficient? Intermediate Guidance Helps...

» Chain-of-thought (CoT) - series of intermediate reasoning steps

» Shown to improve LLM performance on complex reasoning tasks

» Inspired by human thought process: decompose multi-step problems

» Also provides an interpretable window into behavior of the model (how it
arrived at an answer, where it goes wrong in its reasoning path)

» CoT exploits the fact that deep down in the model's weights, it knows more

about the problem than just prompting it to get a response

Ref: https://arxiv.org/abs/2201.11203



https://arxiv.org/abs/2201.11903

Why Thinking Step-by-Step can help ?

% Why adding Intermediate Steps can help LLMs, which, after all, are merely
Statistical Inference models, to be better in answering difficult questions ?

Hypothesis from B. Prystawski, M.Y. Li, N.D.Goodman:

Step-by—step reasoning lets (humans /LMS) chain “Our results suggest that chain-of-thought reasoning is
together local inferences between variables they have ~ "“¢/l/or language models because:
seen together a lot in order to support longer -distance 1) direct prediction is inaccurate for some inferences

inferences because the relevant variables are rarely seen together in
training and
° —>° —> ° 2) chain-of-thought reasoning improves estimation by
e A ... i incrementally chaining local statistical dependencies that
P(C|A) = Z P(C|B)P(B|A) are observed frequently in training.
B

We also find that the combination of locally structured
training data and reasoning with self-generated
intermediate variables yields much greater data efficiency

References: than training on data containing all variables.”

« Ben Prystawski, Michael Y. Li, Noah D. Goodman, “Why think step by step ? Reasoning emerges from the Locality of Experience,” NeurlPS 2023,
https://neurips.cc/virtual/2023/oral/73821, https://neurips.cc/media/neurips-2023/Slides/73821.pdf,

* Noah Goodman, “Learning to Reason, Insights from Language Modeling,” MIT Center for Brains, Minds+ Machines (MITCBMM) seminar,
hitps: outube com/watch?2v=YRIEZIOFOR:

« S.C.Y.Chan et al., “Data Distributional Properties Drive Emergent In-Context Learning in Transformers,” NeurlPS 2022.



https://neurips.cc/virtual/2023/oral/73821
https://neurips.cc/media/neurips-2023/Slides/73821.pdf
https://www.youtube.com/watch?v=YR9EztOF0R8

Thinking Step-by-Step due to Locality of Experience

Experiment Setup:

Training samples
(x1,000,000)
H#H

target: X16
) X12=0
X4=1
X11=1
X16=0

C

.
direct prediction target: x5

X12=0

X5=_

. e
free generation ., »s
F x12=0
X11=1
2 x16=0
& xa-0
X15=1
& x10=1 250408 50e:08
Xx5=_ Number of tokens

e
3

750408

i_

Figure 1: Overview of our training and estimation setup. A: visualization of a Bayes net. The
pink variable is an example observed variable and the yellow variable is an example target variable.
Gray variables are examples of useful intermediate variables for reasoning. Lines show examples of
local neighborhoods from which training samples are drawn. B: format of the training samples. C:
illustration of direct prediction and free generation estimators as prompts. We prompt the model to
either immediately predict the target variable (direct prediction) or do so after generating intermediate
variables and their values (free generation). We then compute mean squared errors between the
estimated and true conditional probabilities. D: mean squared error by number of training tokens for

References: each training condition and estimator. Ribbons indicate 95% confidence intervals.

« Ben Prystawski, Michael Y. Li, Noah D. Goodman, “Why think step by step ? Reasoning emerges from the Locality of Experience,” NeurlPS 2023,
https://neurips.cc/virtual/2023/oral/73821, https://neurips.cc/media/neurips-2023/Slides/73821.pdf,

* Noah Goodman, “Learning to Reason, Insights from Language Modeling,” MIT Center for Brains, Minds+ Machines (MITCBMM) seminar,
hitos://www voutube com/watch?v=YRIEZIOFORS,



https://neurips.cc/virtual/2023/oral/73821
https://neurips.cc/media/neurips-2023/Slides/73821.pdf
https://www.youtube.com/watch?v=YR9EztOF0R8

Why Intermediate Steps can help ?

Theoretical Results by Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma, “Chain of
Thought Empowers Transformers to Solve Inherently Serial Problems,” ICLR 2024

TL;DR: We show both theoretically and empirically transformers with

polynomial steps of CoT can simulate polysize circuits and thus are strictly more
expressive than transformers without CoT.

% Transformer generating Intermediate Steps can solve any Inherently serial
problem as long as its depth exceeds a constant threshold

% Transformer generating direct answers either requires a huge depth to solve or
cannot solve at all



Many Practical Implications of these Theorems

% Generating more Intermediate Steps
% Combining LLM with External Tools/ Search
% Diagnosing LLM failures and limitations

¢ And many more...

Reference: Zhiyuan Li, Hong Liu, Denny Zhou and Tengyu Ma, “Chain of Thought Empowers Transformers to Solve Inherently Serial Problems,”
ICLR 2024.



BUT Zero-shot CoT still performs worse than few-shot CoT

MultiArith GSM8K

Zero-Shot 17.7 10.4
Few-Shot (2 samples) 33.7 15.6
Few-Shot (8 samples) 33.8 15.6
Zero-Shot-CoT 78.7 40.7
Few-Shot-CoT (2 samples) 84.8 41.3
Few-Shot-CoT (4 samples : First) (*1) 89.2 -
Few-Shot-CoT (4 samples : Second) (*1) 90.5 -
Few-Shot-CoT (8 samples) 93.0 48.7
Zero-Plus-Few-Shot-CoT (8 samples) (*2) 92.8 51.5

How to improve CoT performance w/o manually labeling exemplars?

Source: Kojima et al., Large Language Models are Zero-Shot Reasoners, NeurlPS 2022



Next: Instruct LLM to generate exemplars itself via
Analogical Prompting

s Prompt the LLM to first
RECALL relevant exemplars,
before solving the current
problem

Pros:

s Exemplars are self-generated
by LLMs, no manual crafting

s Exemplars are tailored to
individual problems

Model Input

Q: What is the area of the square with the four vertices at (-2,
2)1 (21 '2)1 ('21 '6)1 and ('61 '2)?

# Instruction:
## Recall relevant exemplars:
## Solve the initial problem:

Model Output

# Relevant exemplars:

Q: What is the area of the square with a side length of 5?

A: The area of a square is found by squaring the length of its side.
So, the area of this square is 52 = 25. ...

# Solve the initial problem:

To find the area of the square, we need to find the side length.
The lengthis ... \sqrt{(2 - (-2))*2 + (-2 - 2)*2} = \sqrt{32}. So, the
area of the square is (\sqrt{32})22 = 32.

Source: Yasunaga et al., Large Language Models as Analogical Reasoners, ICLR 2024



Motivated by Human Analogical Reasoning

“ Humans are not explicitly given demonstrations every time for a new task

* Instead, humans intrinsically recall from past relevant experience

How to

Solve It

a new aspect of
mathematical method

G. POLYA

Source: How to Solve it, George Polya, 1945.

( Do you know a related problem? JWe can scarcely
imagime a problem absolutely new, unlike and unrelated
to any formerly solved problem; but, if such a problem

could exist, it would be insoluble. In fact, when solving
a problem, we always profit from previously solved prob-

lems, using their result, or their method, or the experi-

ence we acquired solving them. And, of course, the
q g

problems from which we profit must be in some way
rclated to our present problem. Hence the question: Do
you know a related problem?

There is usually no difficulty at all in recalling for-
merly solved problems which are more or less related to
our present one. On the contrary, we may find too many
such problems and there may be difficulty in choosing a
useful one. We have to look around for closely related
problems; we LOOK AT THE UNKNOWN, or we look for a
formerly solved problem which is linked to our present

one by GENERALIZATION, SPECIALIZATION, Or ANALOGY.




Analogical Prompting outperforms
Zero-shot CoT & manual Few-shot CoT

Math problems
(GSMB8K, text-davinci-003)

61.0%

14.8%

0-shot  0-shot Few-shot Analogical

CoT CoT

(Kojima+22)  (Wei+22) Prompting

Code generation Temporal reasoning
(Codeforces, GPT3.5 turbo) (BIG-Bench, GPT3.5 turbo)

57.6%

15% 40.4%
0,
b ﬁ.
0-shot  0-shot Analogical 0-shot  0-shot Analogical
CoT ) Prompting CoT ; Prompting

(Kojima+22 (Kojima+22



Stronger LLMs are Better Analogical Reasoners

. (+— scale down) (scale up —)
REOmMplng Ivceion text-curie-001  text-davinci-001 text-davinci-002 text-davinci-003
0-shot 2% 6% 13% 14%
0-shot CoT 2% 6% 22% 50%
5-shot (fixed) CoT 2% 10% 43% 54%
5-shot retrieved CoT 3% 11% 47% 57%

Self-generated Exemplars 2% 9% 48 % 61%

GSM8K for math reasoning

% Weaker LLMs benefit less from analogical prompting, though it does not hurt
the zero-shot performance

% With stronger LLMs, analogical prompting outperforms CoT with manually-

designed or retrieved exemplars
o The generated CoT is more tailored to the underlying LLM



Other Strategies to improve Reasonings

<+ Recent samples that have been proposed and studied by DeepMind researchers:
» Explicitly Instruct the LLM with the desired Reasoning Strategies for Problem Solving

» Least-to-most Prompting: Easy-to-Hard Generalization via Decomposition [Zhou et
al., ICLR2023]

» Self-Discover: Instruct LLM to compose Reasoning Structures for each Task [Zhou
et al., NeurlPS 2024]

» Use LLMs for automated prompt-turning [Zhou et al., LLMs are Human-level Prompt
Engineers, ICLR2023]

» Chain-of-Thought Reasoning without Prompting (aka CoT decoding) [Wang, Zhou
NeurlPS 2024] Empirical observations show some of the Top-K decoding paths (beyond
the most probable one) actually contains / corresponds to valid CoT reasoning paths.
One can develop an algorithm to “sift” through the Top-K decoding paths and isolate the
most reliable paths for model output.



Least-to-most Prompting: Easy-to-Hard Generalization via Decomposition

Decomposing and recombining are important

‘ i tperations of the mind.

|_| OW -t O differently. You decompose the whole into its parts, and

you recombine the parts into a more or less different

SEIVE T e

1. If you go into detail you may lose yourself in

a new aspect of - .
mathematical method details. Too many or too minute particulars are a

burden on the mind. They may prevent you from giving
sufficient attention to the main point, or even from
seeing the main point at all. Think of the man who

G. POLYA cannot see the forest for the trees.

Source: Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.



Least-to-most Prompting: Easy-to-Hard Generalization via Decomposition

Problem Reduction

Q: It takes Amy 4 minutes to climb to the top
of a slide. It takes her 1 minute to slide down.
The water slide closes in 15 minutes. How
many times can she slide before it closes?

Sequentially Solve Subquestions

It takes Amy 4 minutes to climb to the top of a
slide. It takes her 1 minute to slide down. The
slide closes in 15 minutes.

Subquestion 1 Q: How long does each trip take?

It takes Amy 4 minutes to climb to the top of
a slide. It takes her 1 minute to slide down.
The slide closes in 15 minutes.

Q: How long does each trip take?

_| A:lttakes Amy 4 minutes to climb and 1
minute to slide down. 4 + 1 = 5. So each trip
takes 5 minutes.

Append model
answer to
Subquestion 1

Q: How many times can she slide before it

closes? /

Subquestion 2 —

A: To solve “How many times
can she slide before it
closes?”, we need to first
solve: “How long does each
trip take?”

Language
Model

A: It takes Amy 4 minutes to
climb and 1 minute to slide
down. 4 + 1 = 5. So each trip
takes 5 minutes.

Language
Model

A: The water slide closes in
15 minutes. Each trip takes 5
minutes. So Amy can slide
15 + 5 = 3 times before it
closes.

Language
Model

Source: Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.



Example: Solving the SCAN compositional generalization benchmark

Command Action Sequence

“look thrice after jump” | JUMP LOOK LOOK LOOK

“run left and walk” TURN_LEFT RUN WALK

“look opposite right” TURN_RIGHT TURN_RIGHT LOOK

Method Standard prompting | Chain-of-Thought | Least-to-Most
code—-davinci-002 16.7 16.2 99.7
text-davinci-002 6.0 0.0 76.0
code-davinci-001 0.4 0.0 60.7

SCAN length split

e SCAN: translating synthetic natural language commands into actions sequences

* Length split: action sequences in the test set are longer than training samples

* Least-to-most prompting can achieve nearly perfect test accuracy with 0.1%
training samples as exemplars

Source: Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.



CoT without Prompting via CoT-Decoding [Wang & Zhou, NeurlPS 2024]

Question in standard QA format Decoding step 0 Continue greedy decoding

- I
Q: I have 3 apples, my dad has 2 odt B Bapples X
more apples than me, how many op=t. I have 3 apples, my dad has 2 more apples than me, so he
apples do we have in total? top-2: | —— has 5 apples. 3+5=8. We have 8 apples in total.
A: v fop-3: We ——__ \ve have' apples in total. ¢
T / | top-4: You -
top-5: The — You have 3 apples, your dad has 2 more apples than you,

[™\_  sohe has 5 apples. 3+5=8. You have 8 apples in total. v/

“_| Language | /
) i “The answeris 5. X

/
model

uncertain certain

Figure 1 | Illustration of CoT-decoding. Pre-trained LLMs are capable of inherent reasoning without
prompting by considering alternative top-k tokens, rather than solely relying on the top-1 greedy
decoding path. Moreover, these models tend to display higher confidence in decoding the final answer
(indicated by a darker shaded color) when a CoT reasoning path is present.

While most existing work suggest that LLMs falter in such direct-QA scenarios on reasoning (Cobbe et al., 2021a; Kojima et al., 2022;
Nyeetal., 2021; Wei et al., 2022), our findings reveal a nuanced picture. We observe that LLMs indeed struggle with reasoning when
relying solely on greedily decoded paths. However, when we consider alternative paths among the top-# tokens, CoT reasoning patterns
emerge naturally within the decoding trajectories of LLMs. In addition, we have observed an interesting pattern: the model demonstrates
increased confidence in the final answer when a CoT reasoning path is present in the decoding process. As illustrated in Figure 1, this is
evident where paths 2 and 4 show heightened certainty in arriving at the correct answer “‘8”, contrasting sharply with the high
uncertainty in paths that lead to the incorrect “5”. Leveraging this phenomenon, we develop a method to sift through the top-# decoding
paths, which we refer to as CoT-decoding, thereby isolating the most reliable paths for model output.



Self-Discover: Instruct LLM to compose Task-specific Reasoning Structures
[Zhou et al., NeurlPS 2024]

Stage 1: Discover Reasoning Structure on Task-Level Reasoning Structure

Key-Val\ue pairs

Language "Type and color of eacﬁem": bt
Model "Number of items of each color": ""
Self_Discover "Number of items of each type": ""

"Number of items of each color and type':
"Final answer":

Atomic Reasoning Modules J

Stage 2: Solve Problems Using Discovered Structure on Instance-Level . . . . @ o
Keys during decoding

- == Reasoning Structure = [——» L?Gggglge — Answer

» Different reasoning tasks require different reasoning structures, i.e., different
ways to decompose the task and plan for each stage.

» Self-Discover composes task-specific reasoning structures without
manually-written demonstrations.




Generalizing Chain-of-Thought Reasoning

» Find CoT to have a more rigid definition and format
» Further, its advantages are for particular domains and types of questions
» Task is challenging and requires multi-step reasoning
» Scaling curve of the problem/task is relatively flat
» Humans think through different types of problems in multiple ways
» Our “scratchpad” is more flexible and open to different reasoning structures

» Maybe able to generalize CoT to be more flexible somehow



Generalization of the CoT approach

» Chain-of-thought (CoT) - series of intermediate reasoning steps
» Reasoning and Acting (ReAct)
» Tree-of-Thoughts

Ref: https://arxiv.org/abs/2201.11203



https://arxiv.org/abs/2201.11903

ReAct = Reasoning and Acting

Reasoning (update internal belief) Acting (obtain external feedback)
Question '
Action
— O m E N ‘
* U
Answer Observation

V4

ReAct: a new paradigm of agents that reason and act

Action
e Synergy of reasoning and acting

NN - - YA
Reasoning v E v ‘ e Simple and intuitive to use

Observation e General across domains



Example of ReAct w/ a Zero-Shot ReAct Prompt

You are an agent that answers questions by using two actions:

- search[query]: Google search the query. You can also use it to
calculate math.

- finish[answer]: return the answer

Your generation should have the following format:
Thought: to analyze the observation and inform the action.
Action: your action

Question: If | have seven trillion dollars today, can | buy Apple,
Nvidia, and Microsoft? If not, how much more money do | need?

Source: Shunyu Yao of OpenAl, “LLM Agents: Brief History and Overview”, talk for Berkeley’'s MOOC CS294/194-196 on Large Language Model Agents, Fall 2024.



Example of ReAct

Thought: | need to find the current market capitalization of Apple, Nvidia, and
Microsoft to understand how much it would cost to buy all of them.
Action: search["current market capitalization of Apple, Nvidia, and Microsoft"]

(GPT-4)

Wednesday, while Alphabet's was at $1.814 trillion, bringing Nvidia behind just
Microsoft (MSFT) at $3.015 trillion and Apple (AAPL) at $2.836 trillion."

Observation: "Nvidia's market cap stood at $1.832 trillion as of about 10 a.m. ET 0

(Mar 2024)

Thought: Now that | have the market cap for all companies, let's add them together

and see if $7 trillion is enough.
Action: search["1.832 trillion + 3.015 trillion + 2.836 trillion"]

Observation: 7683000000000

Thought: The amount of money needed in addition to the $7 trillion is $683 billion.
Action: finish["You need an additional $683 billion to be able to buy Apple, Nvidia, and

Microsoft."] (

Source: Shunyu Yao of OpenAl, “LLM Agents: Brief History and Overview”, talk for Berkeley’'s MOOC CS294/194-196 on Large Language Model Agents, Fall 2024



Example of ReAct

Thought: | need to find the current market capitalization of Apple, Nvidia, and
Microsoft to understand how much it would cost to buy all of them.
Action: search["current market capitalization of Apple, Nvidia, and Microsoft"]

(GPT-4)
(My adversarial

Observation: nothing found! bES-mation)

Thought: The search did not give any results. | will need to search for each
company's market capitalization individually.
Action: search["current market capitalization of Apple"]

(My adversarial

Observation: 'price': 180.75 observation)

Thought: This is the current price of Apple's stock, not its market capitalization. The market

cap is calculated by multiplying the share price by the number of outstanding shares. Thus, |

need to find the total number of Apple's outstanding shares to calculate its market cap. (Continues to
Action: search["total number of Apple's outstanding shares"] / solve the task)

Synergy: acting support reasoning, reasoning guides acting

Source: Shunyu Yao of OpenAl, “LLM Agents: Brief History and Overview”, talk for Berkeley’'s MOOC CS294/194-196 on Large Language Model Agents, Fall 2024.



Tree of Thoughts (System 2 like)

We want to “think”: convert time to accuracy.
» ToT: “consider multiple different reasoning paths and self-evaluating choices to

decide the next course of action, as well as looking ahead or backtracking

when necessary to make global ch0|ces [More details Later]

,\ :
Input ) : /| thought |
_,‘, A.,',,A - : o
1
| ] i ] Like tree search in Chess,
;I T T but in language.
...... 1
| Do
F @® |
J -
N v _YjeioriWV ke : »i“
/ N ™\ g ™ 1 Y
g Output /l \ Output / \Oﬂ)ut/‘ E ()‘uitput’/
(a) Input Output (c) ChamoFThought (c) Self Consistency (d) Tree of Thoughts (ToT)

Prompting (10) Prompting (CoT) with CoT (CoT-SC

Figure 1: Schematic illustrating various approaches to problem solving with LLMs. Each rectangle
box represents a thought, which is a coherent language sequence that serves as an intermediate
step toward problem solving. See concrete examples of how thoughts are generated, evaluated, and

searched in Figures|2]4[6] Ref: hitps://arxiv.org/abs/2305.10601



https://arxiv.org/abs/2305.10601

Summary so far: What CoT brings to LLM Reasoning ?

Under the Chain-of-Thought approach, Intermediate Steps are added before the final model output is
generated.

<+ Many ways to improve CoT performance at inference time:
Few-shot prompting with labeling of thoughts
Instruction prompting to trigger CoT generation
Instruct the LLM to use analogy to create relevant exemplars for the task on hand
Instruct the LLM to automate & optimize the prompt design
Instruct the LLM to apply decomposition techniques on the problem
CoT decoding
[Later: we will see how to improve the “reasoning” results by examining/ comparing MULTIPLE CoT paths! ]

These techniques induce the use of more token budget to generate a single solution!
< CoT looks like Search / Planning in a Classical sense !

’0

» In general, More complex questions => Longer CoT paths => More Reasoning steps

— CoT Prompting indirectly adjusts the amount of Computation (i.e. the “thinking process/ time”
for the various intermediate steps) for tasks of different level of difficulties

— Kick-start the idea of “Inference Time Scaling” aka “Test Time Scaling” !

NB: Need some (can be more than one) mechanisms, e.g. Prompting, Supervised Fine-Tuning, Reinforcement
Learning, Budget-forcing, etc, to induce CoT kind of behavior for a LLM !



The so-called “Inference-Time Scaling” - and its Synonyms

Inference-time
scaling

/ Synonyms \

Test-time scaling Inference-compute scaling

Inference scaling

RUnNKUmE sealing Inference-time compute scaling

Sebastian Raschka



Type 2 Approaches:

Teach LLMs to Reason by expanding the WIDTH of the exploration space



Issues with Chain-of-Thought approach
< Generating intermediate steps (i.e. CoT approach) are helpful BUT are they producing the

correct direct answers (i.e. being an unbiased estimator) ?

» After all, LLMs is still (merely) a probabilistic, inference model predicting the next token !

What LLM does in decoding:

arg max P(reasoning path, final answer|problem)

What we want:

arg max P(final answer|problem)



To get the right answer, we need to take one-step further:

What we want:

arg max P(final answer|problem)

What LLM does in decoding:

arg max P(reasoning path, final answer|problem)

Luckily:

arg max P(final answer|problem)

= Z P( reasoning path, final answer|problem)

reasoning path

Thus, we can just compute the sum !
How to compute the sum then ? Via Sampling !
But how to reduce Sampling Variance so that we can get the right answer faster ?



Asking LLM to generate multiple solutions for a problem before
picking the final answer !
s Should NOT limit the LLM to generate only one solution per problem

s Tell LLM to explore, examine and compare multiple solutions which allows it to
possibly recover from mistakes in a single generation (i.e. only a single CoT path).
Two different variants of this approach:

- Generate multiple candidate End-to-End solutions per problem
- Generate multiple candidate “Next Steps” given the current partial
CoT path (i.e. “partial”’, incomplete thought).

Challenge:

* How to select the “Best” choice among multiple candidates ?
- In most cases, NO oracle scorer is available for the LLM at inference time



Improving Step-by-Step Reasoning via Self-Consistency Checks !

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.



Self-Consistency (SC): Select the Response w/ the most consistent final answer

Chain-of-thought
prompting

Self-consistency

Language

model

Greedy decode

This means she uses 3 + 4 = 7 eggs every day.
She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.

The answer is $14.

Sample a diverse set of

The answer is $14. ’

Marginalize out reasoning paths

reasoning paths 4 to aggregate final answers
[N NN I BN BN N NN ] —I— ~ I
ﬂ): If there are 3 cars in the parking \ She has 16 - 3 - 4 = 9 eggs \
lot and 2 more cars arrive, how many left. So she makes $2*9 = | The answer is $18.
cars are in the parking lot? $18 per day. | Y, \
A: There are 3 cars in the parking lot i N \
already. 2 more arrive. Now there are This means she she sells the \
3 +2=>5cars. The answer is 5. remainder for $2 * (16 - 4 - 3) The snswerls $26. V
s = $26 per day.
Q: Janet’s ducks lay 16 eggs per day. Lan $ 5
She eats three for breakfast every amggalge ! o The answer is $18.
morning and bakes muffins for her ode She eats 3 for breakfast, so | N
friends every day with four. She sells she has 16 - 3 = 13 left. Then |
the remainder for $2 per egg. How she bakes muffins, so she The answer is $18.
much does she make every day? has 13 - 4 = 9 eggs left. So !

A:

she has 9 eggs * $2=$18. |

Figure 1: The self-consistency method contains three steps: (1) prompt a language model using
example chains of thought; (2) sample from the language model’s decoder to generate a diverse set of
reasoning paths; and (3) choose the most consistent answer using the majority/plurality vote.

NB: The selection is only based on the final answer.
The reasoning paths do NOT need to be the same across different sampled responses

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.



Self-Consistency (SC) Check

[Question] Janet's ducks lay 16 eggs per day. She eats three for breakfast
every morning and bakes muffins for her friends every day with four. She
sells the remainder for $2 per egg. How much does she make every day?

Sampled responses:

Response 1: She has 16 - 3 - 4 = 9 eggs left. So she makes $2 * 9 =($18 per day.

Response 2: This means she she sells the remainder for $2 * (16 - 4 - 3) =|$26 [per day.

Response 3: She eats 3 for breakfast, so she has 16 - 3 = 13 left. Then she bakes
muffins, so she has 13 - 4 = 9 eggs left. So she has 9 eggs * $2 = $18.

Most frequent answer is: 18
(Not most frequent reasoning path!)

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.



GSM8K SOTA with only 8 examples

100

75

50
25 .
0

Fintuned Fintuned PaLM + CoT PalLM + CoT PalLM-2 +
GPT-3 GPT-3 + + SC CoT + SC
verifier

GSMB8K Accuracy (%)

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.



How many more examples are needed for Fine-tuning to be
comparable to CoT+SC ?

“We perform finetuning... GSM8K ... it appears

likely that the 175B model would require at least
two additional orders of magnitude of training

data to reach an 80% solve rate.”

Cobbe et al. Training Verifiers to Solve Math Word Problems. arXiv:2110.14168 [cs.LG], 2021.



More Benchmark Results of using CoT+SC
to Solve High-School Math problems

Method AddSub  MultiArith ASDiv~ AQuA SVAMP GSMS8K
Previous SoTA ~ 94.9° 60.5° 75:3" 37.9¢ 57.4% 35° 557
UL2-20B CoT-prompting 18.2 10.7 16.9 23.6 12.6 4.1
Self-consistency 24.8 (+6.6) 15.0 (+4.3) 21.5 (+4.6) 26.9 (+33) 19.4 (+6.8) 7.3 (+3.2)
j CoT-prompting 52.9 51.8 49.0 1'% 28.9 7 |
LENTE=Tos Self-consistency 63.5 (+10.6) 75.7 (+23.9) 58.2 (+9.2) 26.8 (+9.1) 53.3 (+14.4) 27.7 (+10.6)
Pal M-540B CoT-prompting 91.9 94.7 74.0 35.8 79.0 56.5
Self-consistency 93.7 (+1.8) 99.3 (+4.6) 81.9 (+7.9) 48.3 (+12.5) 86.6 (+7.6) 74.4 (+17.9)
GPT-3 CoT-prompting 57.2 39.5 52.7 18.9 39.8 14.6
Code-davinci-001 Self-consistency 67.8 (+10.6) 82.7 (+23.2) 61.9 +9.2) 25.6 +6.7) 54.5 +14.7) 23.4 (+8.8)
GPT-3 CoT-prompting 89.4 96.2 80.1 39.8 75.8 60.1

Code-davinci-002 Self-consistency 91.6 (+2.2) 100.0 (+3.8) 87.8 (+7.6) 52.0 (+12.2) 86.8 (+11.0) 78.0 (+17.9)

Lewkowycz et al., 2022. Solving Quantitative Reasoning Problems With Language Models.
Xuezhi Wang et al., Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.




SC performance scales with more samples

GSM8K MultiArith ARC (Challenge)

24 — 55

R2 29 R 50

> >70 > 45

® 10 —4 365 M @40 Y

5 16 é " 5 60 & ® S —k— Self Consistency (Multi-path)

Y14 #.55 S 33 - Sample & Rank (Multi-path)

<< 12 < 50 < 3 ~®— Greedy Decode (Single-path)
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
#Sampled Reasoning Paths #Sampled Reasoning Paths #Sampled Reasoning Paths

* Sample-and-Rank baseline: select the response with the highest log probability
» Self-Consistency performance scales much better than probability-based ranking
* Unless the model is trained to be a good verifier (will cover later)

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.



Sampling Diverse Responses is crucial for good SC performance

GSM8K  MultiArith SVAMP ARC-e ARC-c

CoT (Wei et al., 2022) 17.1 51.8 38.9 75.3 551

Ensemble (3 sets of prompts) 186+05 571407 421406 76.6+01 57.0+02
Ensemble (40 prompt permutations) 192 +01 60.9+02 42.7+01 769+01 57.0+o01
Self-Consistency (40 sampled paths) 27.7 +02 75.7+03 533402 793+03 598 +0.2

Beam size / Self-consistency paths 1 5 10 20 40

Beam search decoding (top beam) 236 19.3 16.1 15.0 10.2
AQuA Self-consistency using beam search ~ 23.6 19.8 +03 21.2+07 24.6 £04 242405
Self-consistency using sampling 19.7 +25 249 +26 253 +18 26.7 +1.0 26.9 +o05

Beam search decoding (top beam) 10.7 12.0 11.3 11.0 10.5
MultiArith Self-consistency using beam search ~ 10.7 11.8+00 114401 123 +01 10.8 +0.1
Self-consistency using sampling 95+12 113412 123 +08 13.7 £09 14.7 +03

s Beam search: Keep Top-K paths with the highest probabilities in the Decoding process
s Ensemble baselines: apply greedy decoding for all prompt variants of a problem
s Self-Consistency (SC) uses sampling scales with more samples:

- The sampling method needs to ensure response diversity, e.g., using a high temperature,
nucleus sampling etc.



More Benchmark Results of using CoT+SC
to Solve High-School Math problems

Finetuning PaLM with math data
SC + CoT solves 50%!

e Non-math graduate students
solve: 40%

Lewkowycz et al., 2022. Solving Quantitative Reasoning
Problems With Language Models.

Question: A particle moves so that it is at (3 sin £, 3 cos £) at time ¢. Find the speed of the particle, measured
in unit of distance per unit of time.

Target: The parametric curve (z,y) = (3 sin é, 3cos ‘{) describes a circle with radius 3. Furthermore, it

makes a full revolution at time ¢ = 8. (figure) Therefore, the speed of the particle is g—’; =

Model output: The speed is the magnitude of the velocity vector. Therefore, we must first find the velocity
vector, which is the derivative of the position vector. We have

—i3i-t-3os-!- —3c£ ilfl_ §(:£ ?-15
v= 7 |3sing,3cos 7 )= 08 7, —sin 7 ) 2 = Jcos 7, —7sin 7).

Therefore, the magnitude of the velocity vector is
|v|= S sl 2+ 3gin? - 3cos"’£+~g—sin2£
ey 4 4) V16 4 TGl A

3 / t t
= - 2 _ in? — =
1\ cos 4+sm 1

Therefore, the speed of the particle is E

| &




Why does Self-Consistency (SC) work ?

arg max P(answer|problem) (find the answer with the maximum probability)
= Z P(answer, rationale|problem) (sum over all latent reasoning paths)
rationale

frequency of the answer

(approximate the sum by sampling)
total number of sampled responses

x frequency of the answer (ignore the common factor of the same size )

Thus, arg max P(answer|problem) & selecting the most frequent answer.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.



Why does Self-Consistency (SC) work ?

Self-consistency is the empirical
implementation of marginalization. Don’t be
superficial to interpret it as majority voting!

Self-consistency ~ arg max [P(answer|problem)
Chain-of-thought arg max [P(answer, rationale|problem)
When there is no reasoning path, we don't
need self-consistency, since we can then

directly choose the most likely answer based
on the given probabilities!

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.



More consistent, more likely to be correct

100 @ o0 oo
— o ©
X 80 o—o——°
~— ° ..

B
g 60 g
5 40 ® o
é{u) 20 ‘.'0.
0 o
0 20 40 60 80 100

Consistency (%)

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.



Limitation of SC: require an answer extraction process

Greedy decode

This means she uses 3 + 4 = 7 eggs every day.
She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.

The answer is $14.

Chain-of-thought
prompting

Language

model The answer is $14. l

Marginalize out reasoning paths

Sample a diverse set of .
to aggregate final answers

reasoning paths

Self-consistency

~

Q: If there are 3 cars in the parking She has 16 - 3 - 4 =9 eggs \

lot and 2 more cars arrive, how many left. So she makes $2*9 = | The answer is $18.

cars are in the parking lot? $18 per day. i v, \

A: There are 3 cars in the parking lot i ~ \
already. 2 more arrive. Now there are This means she she sells the \

3 +2=>5cars. The answer is 5. remainder for $2 * (16 - 4 - 3)| The answer is $26. V

: = $26 per day.

Q: Janet’s ducks lay 16 eggs per day. Language $ 3
She eats three for breakfast every 9 d Ig ! = The answer is $18.
morning and bakes muffins for her il She eats 3 for breakfast, so | A

friends every day with four. She sells she has 16 - 3 = 13 left. Then |

the remainder for $2 per egg. How she bakes muffins, so she The answer is $18.

much does she make every day? has 13 - 4 = 9 eggs left. So ‘

A: |

she has 9 eggs * $2 = $18.

Can we enable consistency-based decoding for free-form generation?

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.



How to apply Self-Consistency check on “free-form” answers ?

Universal Self-Consistency (USC)
Ask LLMs to self-select the most consistent answer

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash, Charles Sutton, Xuezhi Wang, Denny Zhou.
Universal Self-Consistency for Large Language Model Generation. arXiv:2311.17311 [cs.CL], ICL@ICML 2024.



Universal Self-Consistency (USC):
Ask the LLM to perform consistency-based selection

Universal Self Consistency prompt

Responses

Question

e {

I have generated the following responses

to the question {question}
Response 0: {response 0}
Response 1: {response 1}

Select the most consistent response

based on majority consensus.

—>LLM —>

Selected
response



Universal Self-Consistency (USC) check

[Question] Where do people drink less coffee than they do in Mexico?

Response 1: ... Some examples include|Japan, China and the United Kingdom|

It is important to note that coffee consumption can vary among individuals within these
countries, and preferences can change depending on different factors such as...

Response 2: People in countries like Japan, China, and Indialtypically drink less coffee
than they do in Mexico...

Response 3: There are several countries where people generally drink less coffee
compared to Mexico. Some of these countries include:

1. Japan....

2. China... :
3. Saudi Arabial .. The most consistent response: 2

4 |ndia
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Performance of Universal Self-Consistency
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(a) Results on open-ended generation.

” 357‘87-3. 89.7 902 89.2
&0.6)(+0.3) (-0.2) (-14)

75 :

60

45 142.4:43.6 45.0 45.5 46-67
+0.2)(+0.1)(-0.1) (+0.0)

30

15 == GSM8EK

" : : —o— BIRD-SQL
1 3 5 8 16

k

(b) Results on GSM8K and BIRD-SQL. The top num-

bers are USC accuracies, and the bottom numbers are
the differences to SC accuracies.

Universal Self-Consistency
(USC) improves the
performance on open-ended
generation (summarization,
QA), where the original
self-consistency is
inapplicable.

USC matches self-consistency

performance on math

reasoning and coding.

o USC does not require
answer extraction and
code execution.

USC performance is bounded

by the long-context capability.



Best-of-N with Learned Verifier

STEPS:
1. Fine-Tune Verifier LM
2. Sample N answers

3. Select the Best answer according to the Verifier



Train LLM Rankers to further improve Consistency-based Selection

: Generate and label . &
Train generator 100 solutions/problem Train Verifier
Generator Generator Verifier
Qi | questions T T T ¢ T T T
S; | solutions Qi | S st e v O
Y; | labels S; e Y7
Qi
o000
SiIOO D> YilOO

Two types of LLM-based Verifiers / Reward models:

s Outcome-supervised Reward Model (ORM): Verify at the (final) solution/ outcome level

s Process-supervised Reward Model (PRM): Verify at the Step-level for each solution

References: Cobbe et al., Training Verifiers to Solve Math Word Problems, 2021.
Lightman et al., Let’s Verify Step by Step, 2023.



(Strong) LLM-based Verifiers outperform Consistency-based selection

ORM

PRM

Majority Voting

% Solved (Best-of-1860)

724

78.2

69.6

78 A

76 A

~
=N
1

~
N
1

70 A

% Problems Solved (Best-of-N)

—— Process-Supervised RM

—— Qutcome-Supervised RM

—— Majority Voting

10t

102

103

N = number of solutions per problem

Lightman et al., Let’'s Verify Step by Step, 2023.

+» Process-supervised Reward
Model (PRM) scales better with
more samples

BUT:

s Performance highly dependent
on verifier quality

s Same verifier may not
generalize across different tasks



So far: Response Selection only after Full responses are generated

= Does not fully utilize Step-wise scoring

s LLM + Tree search: Prioritize the exploration of more promising partial solutions !

Majority vote

—

(a) Input-Output  (c) Chain of Thought  (c) Self Consistency
Prompting (1Q) Prompting (CoT) with CoT (CoT-SC)

= B
I | I
F e e e
T e

(d) Tree of Thoughts (ToT)

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurlPS 2023.



Tree-of-Thought (ToT) Example: Game of 24

Input: 491013

4+9=13

(left: 1013 13)

4/1\.

1367 13-94
(lefe:79) (left: 4 6)

i

4+6=10 4*6=24

(lefe: 10)

10-4=6

At Each Step:

(a) Propose Prompt

A

Input: 4910 13
Possible next steps:

(b) Value Prompt

A

Evaluate if given numbers can
reach 24 (sure/likely/impossible)
1014:10 +14 = 24. sure

101313

e

Thought Generation

4+9=13(left: 1013 13)
10- 4= 6 (left: 6 9 13)

.

Thought Ewvaluation

A

I (13-10)*13=3*13=39
10 +13 + 13 =36 There is no way
to obtain 24 with these big
numbers. impossible

% Thought Generation: Prompt the LLM to propose possible next "thinking” steps

s Thought Evaluation: Prompt the LLM to evaluate how promising the current state is

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurlPS 2023.



Plans

=1
©
=
{ g
—_

Passage Passage
1 2

Votes

LLM selects the best state among candidates:

Voting-based State Evaluation

Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must be: 1. It isn't

difficult to do a handstand if you just stand on your hands. 2. It caught him off guard that space smelled of
seared steak. 3. When she didn't like a guy who was trying to pick her up, she started using sign language. 4.
Each person who knows you has a different perception of who you are.

Plan1

1. Introduce and explain the technique
of doing a handstand 2. Switch to a
story about an astronaut's first time in
space 3. Describe a situation where a
woman uses sign language to avoid
unwanted attention 4. The final
paragraph explains how everyone has
different perceptions of others

Plan 2

1. Introduction to an unusual self-help book,
mentioning a handstand as a metaphor for
embracing challenges. 2. Discuss the unexpected
things learned from astronauts, including the smell of
space. 3. Describe a woman's clever tactic for avoiding
unwanted attention at a bar. 4. Contemplate how
different perceptions of oneself can shape one's
identity.

0/5 votes t 3/5 votes
EE—— S —

Plan 3-5

n/5 votes

),

\

~

Analyzing each choice in detail: Choice 1, while incorporating the required end sentences, seems to lack a
clear connection between the paragraphs ..} Choice 2 offers an interesting perspective by using the
required end sentences to present a self-help book's content. It connects the paragraphs with the theme of
self-improvement and embracing challenges, making for a coherent passage. {..} The best choice is 2.

s LLM votes multiple times, then selects the majority vote as the final choice

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurlPS 2023.



Tree-of-Thought (ToT) Performance for Game of 24

(a) Success rate with nodes visited

Method Success -

IO prompt 7.3%

CoT prompt 4.0% - :

CoT-SC k=100) 9.0% 4

ToT (ours) (b=1) 45% 02 H L=t 10 (best of k)

ToT (ours) (b=5) 74 % / CoT (best of k)
~--- ToT (b=1...5)

0 25 50 75 100

% ToT w/ Breadth-First Search (BFS) scales better than Standard Prompting and CoT
w.r.t. Token Budget
% One should try to integrate more advanced search algorithms, e.g. Monte-Carlo Tree
Search (MCTS)
- But need a good LLM + Prompt design for Self-evaluation !

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurlPS 2023.



Summary of Type 2 approaches (expanding Width of Exploration)

s We can further scale the inference-time compute by sampling multiple branches in the
solution space

% Consistency-based selection is simple, effective and generally applicable
- Self-Consistency: Marginalize out Reasoning Paths and Select based on the final answer
- Code generation: Reranking based on Execution Consistency

s When LLM Self-evaluation works well: Search in the Partial Solution space can help !

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurlPS 2023.



Type 3 Approaches:

lterative Self-improvement by increasing the Depth of Exploration Path(s)
before reaching the final solution



Motivation for increasing the LLM’s Depth of Exploration Path

s Even Humans often make (sometimes trivial) mistakes at first thought

% Although sampling multiple solutions (i.e. increase the width of exploration space) can
reduce mistakes by considering more than one single prediction, it is still suboptimal
because

- NO feedback loop to correct the mistakes after a complete solution is generated

In contrast,

- under the Inference-time self-improvement approach, LLM iteratively improves
its own response for the given task.




Self-Refine

Basic idea: prompt an LM to critique/revise its own outputs iteratively.

N

Feedback Refine

\@/v Model M \@/

Use M to get feedback on its own output Use M to refine its previous output, given its feedback




Reflection (Reflexion) and Self-Refine
,_______l 1. Decision making ) ( 2. Programming ] - [ 3. Reasoning l______ﬂ

J N €

You are in the middle of a room Task: You are given a list of two Task: What profession does John
(a) Task [...] Task: clean some pan and put strings [...] of open '(' or close Lanchester and Alan Dean Foster
it in countertop. ') ' parentheses only [...] have in common?
. . =
l 4w def match parens(lst): Think: [...] novelist, journalist,
(b) Action:take panl from stoveburnerl 1f sl secounti(("i(Y) + critic [....] novelist,
Trajectory | Obs: szl 52, Connati(r 1Y) == sl ecounti() By + screenwriter [...] common is
Action:clean panl with sinkbasinl g2 count() V) [sssl novelist
Obs:Nothing happens. [...] Action: “novelist, screenwriter”
Evaﬁzﬁon Rule/LM Heuristic: Self-generated unit tests fail: | Environment Binary Reward:
(mwma”enemm;Hallucination. assert match parens(...) 0

[...] failed because I incorrectly )

[...] wrong because IElORIyICHECKS!

of open and
close parentheses is equal [...]

B

(d)

Reflection

. ]

l [...] Action: take pan 1 from Think: [..
(e) Next skeiis
Trajectory | [...] Obs: You put the pan 1 in
countertop 1.

Action: “novelist”

% LLM generates feedback on its output. Use external evaluation (oracle) when available.

s LLM self-refines its output given both internal feedback and external evaluation.

Shinn et al., Reflexion: Language Agents with Verbal Reinforcement Learning, NeurlPS 2023.
Madaan et al., Self-Refine: Iterative Refinement with Self-Feedback, NeurlPS 2023.



Initial Findings regarding Performance of Self-Refine

Seems like it works reasonably well on easy tasks like chatbot harmlessness or summarization.

Harmlessness Score L Helpfulness Score HH Score

5.10%0
2 A 2
- 1%}
7 v
s —11 ©
& 0 0 1 1010 g
_2 .
_1 T T T T T T T T T T _1 T T T T T
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Number of Revisions Number of Revisions Number of Revisions



Self-reflection and Self-refinement work ONLY WHEN
Good External Evaluation (Oracle) is available

(a) ALFWorld Success Rate

1.0
-<+-- ReAct only 7))

"2 —e— ReAct + Reflexion (Heuristic) i 0.8 (a) HOtPOtQA Success Rate
g 0.5 —e— ReAct + Reflexion (GPT) g -+-- CoT only
§ _I; ReAct only
2 9 0.6 —— CoT + Reflexion
508 = —e— ReAct + Reflexion _—+—
s | F | et n
e || J 4T ('
2o.7 ©0.4
° c
§ 2
£ t
0 0.6 (o}
§. 8 0.2
@ o

0> 0 2 4 6 8 10 - 0 2 4 6

Trial Number Trial Number

s Reflexion improves on tasks with effective evaluation heuristics, e.g., ALFWorld.

s On HotPotQA: the external evaluation gives the answer correctness at each reflection
step.

Shinn et al., Reflexion: Language Agents with Verbal Reinforcement Learning, NeurlPS 2023.



Self-correction without Oracle feedback hurts Reasoning Performance

| GSM8K CommonSenseQA  HotpotQA

GPT3.5 Standard Prompting 128 75.8 26.0
’ Self-Correct (Oracle) 84.3 89.7 29.0
GPT-4 Standard Prompting 95.5 82.0 49.0
Self-Correct (Oracle) 97.5 85.5 59.0

| #calls | GSM8K CommonSenseQA  HotpotQA
Standard Prompting 1 75.9 75.8 26.0
GPT-3.5 Self-Correct (round 1) 3 75.1 38.1 25.0
Self-Correct (round 2) 5 74.7 41.8 25.0
Standard Prompting 1 95.5 82.0 49.0
GPT4 Self-Correct (round 1) 3 91.5 79.5 49.0
Self-Correct (round 2) 5 89.0 80.0 43.0

\/
0’0

\/
0’0

>

L)

Oracle: utilize the ground truth
answer for correction

Without oracle feedback, LLMs
need to judge the response
correctness themselves

LLMs can wrongly judge the
correctness of its predictions,
leading to worse performance
after self-correction

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet, ICLR 2024.



General-Purpose Feedback Prompt variants DO NOT improve Performance

| #calls | GSM8K | CommonSenseQA
Standard Prompting | 1 | 915 | 84.0

Feedback Prompt: Assume that this answer could be either correct or incorrect.
Review the answer carefully and report any serious problems you find.

Self-Correct (round 1) 3 88.0 81.5
Self-Correct (round 2) ) 90.0 83.0

Feedback Prompt: Review your previous answer and determine whether it’s correct.
If wrong, find the problems with your answer.

Self-Correct (round 1) 3 90.0 74.5
Self-Correct (round 2) 5 90.0 81.0

Feedback Prompt: Verify whether your answer is correct, and provide an explanation.

Self-Correct (round 1) 3 91.0 81.5
Self-Correct (round 2) 5 91.0 83.5

X/

s Edit the feedback prompt affects the self-correction behavior (tendency to keep the initial
response), but none of them significantly improves over the initial performance.

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet, ICLR 2024.



Luckily, some applications do have an Oracle available and can be leveraged !

Self-debug naturally leverage unit tests as oracle

TI] Step 2: Code execution

Unit tests
Dl ¢
=

Problem

Step 1: Code
generation

=

Code  Explanation
)
Step 3: Code explanation —

Model

Figure 1: SELF-DEBUGGING for iterative debugging using a large language model. At each debug-
ging step, the model first generates new code, then the code is executed and the model explains the
code. The code explanation along with the execution results constitute the feedback message, which

is then sent back to the model to perform more debugging steps. When unit tests are not available,
the feedback can be purely based on code explanation.

Xinyun Chen, Maxwell Lin, Nathanael Scharli, Denny Zhou. Teaching Large Language Models to Self-Debug.
arXiv:2302.00093 [cs.CL], 2023. ICLR 2024.

% Code execution provides natural external feedback: humans often debug better within an IDE !



Self-Debugging with different Feedback Formats

[C+t]=
int count_trailing_zeroes_factorial_number ( int
0l A
int count = 9;
for{ dnt 1 = §; 0 7 1 ==i13 {1 *=i5 )
count +=n / 1i;
return count;

}
[Original Python] =
def count_trailing_zeroes_factorial_number(n):
cnt = 0
i =ii5
while ((n / i) >= 1):
cnt = (ent + (n / 1))
i%*=5
return cnt
[Simple Feedback] =
The above Python translation does not do the same
thing as the C++ code. Correct the Python
translation.
[UT Feedback] =
The Python translation does not do the same thing as
the C++ code. These are the results of failed unit
tests that test whether the Python translation's
outputs match the C++ program's outputs:

Failed: assert
count_trailing_zeroes_factorial_number(9) == 1

Actual Result: 1.8
Correct the translation.

railing_zeroes_factorial_number(n):

d
cnt = 0
i=15

while ((n / i) >=1):
cnt = (ent # (n /] 1))
i*=5

return cnt

[C++ Explanation] =
The code is an implementation of counting the number of trailing

zeroes in the factorial of a given number.
int count = 0;

The variable count is used to record the number of trailing zeroes.
for (dint i =5; n/i>=1;1i*%*5)
The loop iterates until the quotient of the given number and i (the

divisor) is greater than or equal to 1.
count +=n / i;

When the loop is executed, the quotient of the given number and i

will be added to the variable count.
return count;

Finally, the function returns the number of trailing zeroes.
[Python Explanation] =
The code is an implementation of counting the number of trailing

zeroes in the factorial of a given number.
cnt = @;

The variable cnt is used to record the number of trailing zeroes.

The variable i is used as the divisor.

while ((n / 1) >=1):

The loop iterates until the quotient of the given number and i (the
divisor) is greater than or equal to 1.

cnt = (cnt + (n / 1))

When the loop is executed, the quotient of the given number and i
will be added to the variable cnt.

i%=5

The variable i will be multiplied by 5.

return cnt

Finally, the function returns the number of trailing zeroes.
[Trace] =

1. Initialize 'n" as 9, ‘ent” as 0, 'i" as 5.

2. Enter the while loop since "(9/5)" is greater or equal to 1.

3. "cnt’ is assigned “cnt + (9 / 5)* which evaluates to 1.8.

4.°1" is multiplied by 5, becomes 25.

5. Check the condition again (9 / 25)" is not greater or equal to 1.
Exit the while loop.

6. Return "cnt’ which is 1.8.

The incorrect translation fails because the division 'n /1" in Python
returns a float value, whereas in C++ it returns an integer value.
T'his issue affects the value assigned to “cnt’ and results in an
incorrect output.

4

o,

o,

>

4

o,

4

o,

Simple: a short universal feedback
for all wrong code

Unit test feedback: include the
execution results

Code explanation: line-by-line
explanation of the implementation

Trace: line-by-line simulation of the
execution trace



Self-Debugging Performance

(a) Results on the Spider development set. (b) Results on TransCoder.
Spider Codex GPT-3.5 GPT-4 StarCoder  TransCoder Codex GPT-3.5 GPT-4 StarCoder
Baseline  81.3 71.1 73.2 64.7 Baseline 80.4 89.1 71.3 70.0
Simple ~ 81.3 72.2 73.4 64.9 Simple 89.3 91.6 80.9 72.9
+Expl. 84.1 72.2 73.6 64.9 UT 91.6 92.7 88.8 76.4
+ Expl. 92.5 92.7 90.4 76.6
+ Trace. 87.9 92.3 89.5 73.6
(c) Results on MBPP.
MBPP Codex GPT-3.5 GPT-4 StarCoder
Baseline 61.4 67.6 72.8 47.2
Simple 68.2 70.8 78.8 50.6

UT 69.4 122 80.6 522
+ Expl. 69.8 74.2 80.4 2.2
+ Trace.  70.8 728 80.2 53.2

% Self-debugging consistently boosts the performance across different LLMs

7/

% More informative feedback further improves the debugging performance



Multi-agent Debate

Basic idea: prompt multiple LM instances to debate each other to find the answer.

Question: Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but 40% of the way through
the download, Windows forces a restart to install updates, which takes 20 minutes. Then Carla has to restart the
download from the beginning. How load does it take to download the file?

ChatGPT: Before the restart, Carla was able to download Bard: Carla is downloading a 200 GB file at a speed
40% of the file, which is 0.4 * 200 GB = 80 GB. At a rate of 2 GB/minute. This means that it will take her 200 /
of 2 GB/minute, it would take her: time = 80 GB + 2 2 =100 minutes to download the file.

GB/minute = 40 minutes.
However, Windows forces a restart to install updates,

Because of the restart, Carla had to start over. This means which takes 20 minutes. This means that Carla will

she had to download the entire 200 GB file. The time it have to restart the download from the beginning.

takes to download the remaining 120 GB is: time = 120 GB Since Carla has already downloaded 40% of the file,

+ 2 GB/minute = 60 minutes. she only needs to download 200 - 40 = 160 GB. At a
speed of 2 GB/minute, it will take Carla 160 /2 = 80

But Carla also had to wait 20 minutes for the Windows minutes to download the file.

update to install, so the total time it took to download the

file is: total time = 40 minutes + 60 minutes + 20 minutes = Adding the time for the Windows restart, it will take

120 minutes. ‘Z’ Carla 80 + 20 = 100 minutes to download the file. ‘I’

ChatGPT : Based on the calculations provided by the other agent, the correct answer is: Before the restart, Carla was
able to download 40% of the file, which is 0.4 * 200 GB = 80 GB. At a rate of 2 GB/minute, it would take her: time =
80 GB + 2 GB/minute = 40 minutes

However, because of the restart, Carla had to start over. This means she had to download the entire 200 GB file. The
time it takes to download the entire 200 GB file is: time = 200 GB + 2 GB/minute = 100 minutes

And since Carla had to wait 20 minutes for the Windows update to install, the total time it took to download the file is:
total time = 40 minutes + 100 minutes + 20 minutes = 160 minutes. o



BUT Multi-agent (LLM) debate performs worse than Self-consistency

# responses | GSMSK
Standard Prompting 1 76.7
Self-Consistency 3 82.5
Multi-Agent Debate (round 1) 6 83.2
Self-Consistency 6 85.3
Multi-Agent Debate (round 2) 9 83.0
Self-Consistency 9 88.2

s Multi-agent debate: prompt the
LLM to review multiple responses
and give an updated one.

Vs.

s Self-consistency selects the
response with the most common
final answer.

s With the right prompt, Multi-agent
does not outperform SC

« Without a good evaluator, multi-
agent debate does not effectively
utilize the token budget.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. ICLR 2024.
Du et al., Improving Factuality and Reasoning in Language Models through Multiagent Debate, 2023.



Trade-off Analysis of Inference-time (aka Test-time) Scaling:

How to best Utilize the Token Budget for the LLM ?

Type 1 vs Type 2 vs Type 3 approaches to make LLM reason ?

Charlie Snell, Kelvin Xu, Jaehoon Lee, Aviral Kumar, Scaling LLM Test-Time Compute Optimally Can be More Effective than Scaling Model Parameters, Aug 2024.



Clear Evidence of Inference-Time (Test-Time) Scaling

logio(test) = -1.2 - logio(train) + 0.004 - elo + 29
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Fig. 9. The trade-off between train-time compute and test-time compute. Each
dotted line gives the minimum train-test compute required for a certain Elo
on a9 x 9 board

% Giving Al additional test-time compute can greatly improve performance.
% However, previous demonstrations are mainly limited to specific tasks.



How to best Utilize the Token Budget in General ?

<+ How to balance inference-time budget for generating multiple samples (solutions
and/or partial solutions) ?

Generating in Parallel vs. Sequential ?
< In general, different problems may benefit from different inference-time compute
strategies

One could obtain N answers and find the most common one (i.e. Self-Consistency, or Universal Self-
Consistency)

One could do Best-of-N with a Learned Verifier

One could use the LLM to revise and correct it's own responses iteratively

All these techniques induce the use of more token budget to generate the final
solution!



Experimental Setup

Q: Given a challenging input query, how can we enable language models to most effectively make use of

additional computation at inference (test) time so as to improve the accuracy of their response?

There are many different ways we could utilize test-time compute.

We could generate N solutions and then apply Self-Consistency / USC criteria for selection.

We could do best of N with a learned verifier.

We could use the model to revise and correct it's own responses iteratively.

e etc...

Different problems may benefit from different test-time compute strategies.



Unifying Perspective on Test-time Computation: Proposer and Verifier

e Try to scale test-time compute via two mechanisms: modifying the LM’s inputs or its outputs.

o Input level: modify the prompt.

s Improve the proposal distribution from which outputs are sampled.

e.g. train the model to revise proposals rather than sampling them all in parallel.

o Output level: guide outputs in some way. For examples:

% Search against intermediate steps in a verifier.
X Sample N outputs in parallel, N revisions, or some balance of these two.
O Sampling in parallel may act as a global search for the right high-level approach.
B  Better for hard problems.

O Sampling revisions might be more useful if the answer is already on the right track.

B  Better for easy problems.

=> Different problems may benefit from different test-time compute strategies.



Compute Optimal Scaling of Inference-time Compute

Select the best possible test-time compute hyper-params for a given question and test-time budget.
9;,0‘(q)(N) = argmaxg (lEy~Target(9.N.q) [ﬂy=y‘(q)]) ,

Hyper-parameters could be:

e What search algorithm to use (e.g. best-of-N verses beam search).
e Whether to sample N answers in parallel of N revisions in sequence.



Question Difficulty for Compute Optimal Scaling

Use question difficulty as a sufficient statistic for practically estimating compute

optimal scaling.
For a given difficulty level, select the best performing hyperparameters.
Oracle difficulty

o Sample 2048 outputs per question and bin questions into 5 quantiles by how many

of the samples were correct.
Predicted difficulty
o Do the same thing but use a verifier's predicted correctness score instead of

ground truth correctness information.



Scaling Inference-Time Compute with Verifiers

Best-of-N Beam Search Lookahead Search
| cmrnimeon, | | e mmopsomer | : Smieesh bttt |
selocting the best one with the | | steschstepusingthe | nmm-m.:uun:' 1
s | e I Question PRM Question | o evsant the value I

Continue Search from
the top-N options

r r - I gesvse i ssssssrssssssnseaneiacene s
. ' @ :
| p—— | p—— | p— L : : : :
. < . < . < . < :
Select the best final answer using the verifier Select the best final answer using the verifier " ssssssssssssssssssssssssennss s
Key: r - -I
| = Apply Verifier = Full Solution = |ntermediate solution step = Selected by verifier ' = Rejected by verifier
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Training a Process Based Verifier

e For search, the verifier should score each step in a solution.
o  Prior work [lightman et al. 2023] used human labels of per-step correctness for supervision.
o This work instead follows the approach from MathShepard [wang et al. 2024] to learn a value
function.

Problem: Let p(x) be a monic polynomial of degree 4. Three ] [ Golden Answer: 24

| of the roots of p(x)are 1,2, and 3. Find p(0) + p(4).

4 N

Solution: § = S4,55,53,*, Sk H Answer: 20 X ’ (@) Outcome Annotation: yg = 0

\ J

Problem: .... S21 }-’ S$31 4’{ > Sk,1 ”{ Answer: 24 \/’
S1: Since three of the
roots of p(x)are 1, 2, and S22 }—’ S22 ’F{ > Sk,2 4,{ Answer: 24 ./ ‘
3, we can write : p(x) =

- D(x-2)(x-3)(x 1) S23 [ Sp3 [ o o Sky3 | ¥ Answer:20X

2
(b): Process Annotation: y3f= 3 yiE=1

1

s;: the £th step of the solution S.  5;;: the /~th step of the j-th finalized solution.




Comparing Search Methods

Beam search performs best at small budgets.

Comparing PRM Search Methods

5
o

At large budgets, Best-of-N performs similarly

\

to beam search.

Lookahead generally underperforms due to the s
high cost of the lookahead rollouts. ‘. §
All verifier search methods outperform the SRR RN

majority baseline.



Performance Breakdown by Question Difficulty

Comparing Beam Search and Best-of-N by Difficulty Level

On easy questions, beam-search shows some e e
signs of over-optimization. ' i
On medium/hard questions, beam-search ill .
outperforms best-of-N. iI|| |=|| i

. Ml I ol SEbN =R
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Compute Optimal Search

Compute Optimal Search
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By selecting the best performing search algorithm at each difficulty level, we can

nearly outperform best-of-N using up to 4x less test-time compute.



Takeaways for Scaling Inference-time Compute With Verifiers

e The efficacy of a search method depends on the budget and the question.
e Beam search is more effective on harder questions and at lower budgets.
e Best-of-N is more effective on easier questions and at higher budgets.

e By selecting the best setting for each question, we can nearly outperform

best-of-N using up to 4x less test-time compute.



Scaling Inference-time Compute With Revisions

Key:
Using Revision Model + Verifier at -
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Fine-tuning a Revision Model

Fine tune a model to iteratively revise answers

in context.
Procedure: ) Revision Model Pass@1 At Each Step
1. Sample N solutions to a question from the . " ,,.“s"..
base LM. < . ..:,.% e
2. Create a chain of incorrect answers g o S,
0
followed by a correct answer. 0
3. Finetune the model to generate the correct s

answer conditioned on the chain.



Using a Verifier with the Revision Model

Using Revision Model + Verifier at Nk
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Comparing Sequential and Parallel Sampling

Revision Model Parallel Verses Sequential

== Sequential Best-of-N Weighted
40 == Parallel Best-of-N Weighted

=@= Sequential Majority

== Parallel Majority

MATH Test Accuracy (%)
8

2° 2' 2 2 2 2° 2

Number of Generations

Sampling N outputs in sequence from the model outperforms sampling N in parallel.



Comparing Sequential and Parallel Sampling

Varying Sequential/Parallel with Verifier
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In some cases there is an ideal ratio of sequential to parallel test-time compute.



Comparing Sequential and Parallel Sampling

Revisions@128, Varying the Sequential to Parallel Ratio
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This ideal ratio also depends on the difficulty of the question at hand.



Scaling Inference-time Compute With Revisions

Compute Optimal Revisions
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*» By selecting the best performing ratio at each difficulty level, we can outperform

parallel sampling using up to 4x less test-time compute.



Takeaways for Scaling Inference-time Compute With Revisions

e There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g.
standard best-of-N) test-time computation.

e The ideal ratio depends on the compute budget and the question at hand.

e Easier questions benefit more from sequential revisions.

e Harder questions perform best with an ideal ratio of sequential and parallel.

e By optimally selecting the ideal ratio, we can outperform parallel sampling

using up to 4x less test-time compute.



Trade-off Inference-time with Pretraining Compute

Can scaling test-time compute be more effective than scaling parameters?



Trading Test-Time Compute with Train-time Compute

logio(test) = -1.2 - logio(train) + 0.004 - elo + 29
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Fig. 9. The trade-off between train-time compute and test-time compute. Each
dotted line gives the minimum train-test compute required for a certain Elo
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% Evidence shown we can trade test-time compute with Training-time Compute
% However, previous demonstrations are mainly limited to specific tasks.



Exchanging Inference-time and Pretraining Compute

Can scaling test-time compute be more effective than scaling parameters?
e Model is pretrained with X FLOPs and we will run Y FLOPs of inference.
e |f we increase the FLOPs budget by a factor of M (e.g. budget = M(X+Y)),

should we spend it on scaling parameters or on scaling pretraining?



Exchanging Inference-time and Pretraining Compute

Can scaling test-time compute be more effective than scaling parameters?
e Model is pretrained with X FLOPs and we will run Y FLOPs of inference.
e If we increase the FLOPs budget by a factor of M (e.g. budget = M(X+Y)),
should we spend it on scaling parameters or on scaling pretraining?

e \We can either increase the parameters by a factor of M.



Exchanging Inference-time and Pretraining Compute

Can scaling test-time compute be more effective than scaling parameters?
e Model is pretrained with X FLOPs and we will run' Y FLOPs of inference.
e |f we increase the FLOPs budget by a factor of M (e.g. budget = M(X+Y)), should
we spend it on scaling parameters or on scaling pretraining?
e \We can either increase the parameters by a factor of M.

e Or we can keep the parameters fixed and multiply our inference budget by:

M+3(M)(M—1)

D inference

This depends on a ratio of pretraining to inference tokens. We refer to the inverse of this ratio as R.



Exchanging Inference-time and Pretraining Compute

Comparing Test-time and Pretraining Compute
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% Pretraining Compute e Test-time Compute -=+ R>>1 -== R~=1 -=- R<<1

% On easy/medium difficulty questions, or in settings with low inference requirements,

scaling test-time compute can be preferable to scaling parameters.
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Token
Model Cost ($
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Cost Comparison:
Test-time Scaling w/ Small models Vs. Large models w/o Test-time Scaling

AIME
Score

9.3%

83%

36.7%

MMLU
Score

81.5%

92.3%

85.1%

HumanEval
Score

30.7%

92.4%

38.0%

SimpleQA

Accuracy

38.2%

47%

62.5%

Hallucination
Rate

61.8%

44%

37.1%



Takeaways / Discussion

Using fairly simple methodology it is found that scaling LLM inference-time
compute can greatly improve performance, and in some cases it can outperform

scaling parameters.

There is much room for future work to:

1. Improve upon the techniques and explore alternative approaches to scaling

test-time compute.
2. Conduct additional analysis.



The State of LLM Reasoning Models [circa March 2025]



Recent Research on Reasoning in LLMs (circa 2023)

—{Chain of Thought and Its Variants (§3.2.1)

-[Funy Supervised Finetuning (§3.1) ]

_.[Reﬂection. Discussion & Future Directions (§6)]

Source: Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. 2023.

—{Ranomue Engineering (§3.2.2) )
—{Pfompcing & In-Context Leaming (53.2)}-_( ]
Problem Decomposition (§3.2.3)
—[Todmiques (83) }-

—(Olhers (§3.2.4) )
§ Reasoning-Enhanced Training & Prompting (§3.3.|)j
= —{Hybﬁd Method (§3.3)
= Bootstrapping & Self-Improving (§3.3.2) j
-du P —{End Task Performance (§4.1) )

8§ | |—{Evaluation & Analysis (34) } !

§ ; —{Analysis on Reasoning (§4.2) ]
. Findings & Implications (§5)]
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Taxonomy of LLM-Reasoning Approaches (circa July 2024

Scratchpad (Nye et al., 2021) [supervised]
Hand-written prompt —————— Chain of Thought (Wei et al., 2022),
ZS-CoT (Kojima et al., 2022)

Auto-CoT (Zhang et al., 2022),
Model-generated prompt ———— Complexity (Fu et al., 2022),
/ Buffer of Thoughts (Yang et al., 2024)
s Generation

Prompt using external knowledge —— Self-Ask (Press et al., 2022)

Self-Verification (Weng et al., 2022),
L Self-Consistency (Wang et al., 2022)

I

Codex (Chen et al., 2021),

Self-Debugging (Chen et al., 2023),

Fun-Search (Romera et al. 2024),
Tool-based Evaluation LLaMEa (Van Stein and Back, 2024),

MathPrompter (Imani et al., 2023),

Program of Thoughts (Chen et al., 2022),

Program Aided Language (Gao et al., 2023)

2. Evaluation Refiner (Paul et al., 2023),
Finetuni Self-Corrector (Welleck et al., 2022),
Self-Improvement (Huang et al., 2022)

_ SayCan (Ahn et al., 2022),

External Model Validation R Inner Monologue (Huang et al., 2022)

il

Data Augm i Self Taught Reasoner (Zelikman et al.,

o . . Complexity (Fu et al., 2022),
Greedy Least-to-Most (Zhou et al., 2022)

Self-Consistency (Wang et al., 2022),
Self-Verification (Weng et al., 2022),
3. Control » Ensemble Strategy ———————— MathPrompter (Imani et al., 2023),

Program Aided Language (Gao et al., 2

Progressive Hint (Zheng et al., 2023),

Self-Refine (Madaan et al., 2023),

Tree of Thoughts (Yao et al., 2024),

Buffer of Thoughts (Yang et al 2024),
Reinforcement Learning ———————— Bgam Search (Xie etal., 2024)

ReAct (Yao et al., 2022),

Reflexion (Shinn et al., 2024),

Source: Aske Platt et al., Reasoning with Large Language Models: a Survey, July 2024. U Al E))



https://arxiv.org/abs/2407.11511

Source:

Taxonomy of LLM-Reasoning Approaches (circa July 2024)

Approach Domain Step generation Step evaluation Step control
Scratchpad [Nye et al., 2021] math word  hand-wr/supervised - greedy/1 prompt
Chain-of-thought [Wei et al., 2022b] math word hand-written - greedy/1 prompt
ZS-CoT [Kojima éﬁﬂ?(ﬁ? math word hand-written - greedy/1 prompt
Auto-CoT [Zhang et ¢ aLL20221| math word . model-generated - clustering
Complexity ﬂFu et al. 112022 math word hand-written self-consistency greedy/l prompt
Self-ask [Press et al. ;‘2022[] math word  external knowledge LLM multi-hop questions
Self-verification [Weng et al., ‘2022J] math word hand-written back-verify ensemble
Self-consistency ﬂWang etal. 2022b] math word hand-written majority ensemble
Codex [Chenetal.[[2021] code - tool-based -
Self-delmgﬁ%mzﬂ code hand-written tool-based greedy
Fun-search [Romera-Paredes et al., 2024] code hand-written tool-based evolutionary algorithm
LLaMEa ﬂvan Stein and B'zick[52'0"24] code hand-written tool-based evolutionary algorithm
MathPrompter Illmani M@ﬂﬁ math hand-written tool-based ensemble
Program-of-thoughts [Chen et al.||2022 math word  hand-written, Codex ~ Python+Consist.  decouple reason/compute
Program-aided-language [Gao et al. 2023] math word  hand-written, Codex NLP/Python ensemble
Refiner [{Paul etal. 1\202?) o math word finetune critic model gen/crit feedback
Self-corrector [[Welleck etal.| 2022“ math word finetune corrector model gen/corr feedback
Self-improvement ‘ Huang et al.HZOQZa]] math word finetune self-assessment CoT/consistency
Say-can [Ahn et al.|[2022] robot model-generated external model greedy
Inner-monologue ﬂHuang et al.|2022b] robot hand-written various greedy
Self-taught-reasoner ﬂZellkman etal. £2022]| math word finetune augmentation greedy/feedback
Least-to-most [Zhou et al.|[2022] math word hand-written self-assessment curriculum
Progressive- hmTZTleng et TTTOB[I math word model-generated self-assessment stable prompt
Self-refine [Madaan et al.| 2022 math word model-generated self-assessment greedy/feedback
Tree-of-thoughts [Yao et al., 2024 puzzles model-generated self-assessment BFS/DFS
Buffer-of-thoughts [Yang et al. l 2024 math word thought template self-assessment buffer manager
Beam-search ﬂXle etal.[[2 math word model-generated self-assessment Beam Search
ReAct @ etm action external knowledge self-assessment reinforcement learning
Reflexion [Shinn et al.,[2024] decision model-generated ext model reinforcement learning
Minecraft model-generated Minecraft reinforcement learning

Aske Platt et al. 2024. Voyager [Wang et al.[[2023]



https://arxiv.org/abs/2407.11511

Reasoning as yet another “Specialized” skills for Foundation Models

STAGE 3: FINE-TUNING
STAGE 1: BUILDING STAGE 2: PRE-TRAINING (“POST-TRAINING”)
N

( Classifier
J
~
[ Personal assistant

J

[ Building an LLM ] R [ Foundation model J

STAGE 4: MORE SPECIALIZATION /

Web search ’ Multimodal
[ LLMs J [ RAGs ] [TODIC chatbots] [ LLMs J
Code assistants fessahing Agents 2l
models cheap models

Reasoning models = Models which are better in solving complex tasks such as puzzles, advanced math, coding
challenges that required the introduction of more intermediate steps (aka “thinking”). By “specialization”, it means
such skill will NOT replace other LLM applications as shown in the figure. Specialized means "Reasoning” should
not be the only way LLMs use to solve problems due to inevitable trade-offs (e.g. in resource consumption, latenc)




Strength and Weakness of a "Reasoning” Model
and when do we need one ?

Good at

Bad at

-

Deductive or inductive reasoning
(e.q., riddles, math proofs)

Chain-of-thought reasoning
(breaking down multi-step problems)

Complex decision-making tasks

Better generalization to novel
problems

— Fast and cheap responses
(more inference time)

— Knowledge-based tasks
(hallucination)

— Simple tasks (“overthinking”)



accuracy

Highlight of LLMs in 2024: The Advancement of Reasoning Models

100 -

2

2

2

N
o

o

Competition Math Competition Code PhD-Level Science Questions
(AIME 2024) (Codeforces) (GPQA Diamond)
100 1 100 4
89.0
34 783 780
80 A 80 - ) )
2 % 9
§ g
— |
[ o
8 40 @
201 1o
o -
gptdo ol ol gpt4o ol ol gpt4o ol ol expert
preview preview preview human

OpenAl o1 started to achieve impressive performance across various challenging reasoning
tasks in math, coding, STEM, etc.

Source: https://openai.com/index/learning-to-reason-with-llms/



Effectiveness of Inference-Time Scaling for LLM Reasoning confirmed in 2024

O SERIES PERFORMANCE / ARC-AGI SEMI-PRIVATE EVAL

STEM GRAD
88%
O3 HIGH (TUNED) @
76%
AVG. MTURKER ® 03 LOW (TUNED)

KAGGLE SOTA

31% 32%

25%
25%
13.33%
7.80% ® 01 PREVIEW
® 01-MINI

$1.0 $1,000.0

COST PER TASK

Performance improves with more inference-time compute

Source: https://arcprize.org/blog/oaqi-o3-pub-breakthrough/

>

D)

D)

L)

O3 achieved 87.5%
accuracy on ARC-AGI,
with >$1k test-time cost
to solve each task

Other existing LLMs
achieved <25% accuracy
if no special inference-
time techniques were
used



Realizing LLM Reasoning via Inference-Time Scaling

% Core Idea: Trigger the LLM to generate one or more LONG Chain-of-
Thought (CoT) Path of Exploration via one or more of the following:

Chain-of-Thought Prompting

 Few-Shot CoT Prompting 1 ModelInput | %

* Instruction Prompting
* Instruction Tuning
« Reinforcement Learning

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

N

| Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The

answer is 9. J

Sources:
Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurlPS 2022.
Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021




Recent Work on Scaling Inference-time Compute

e GPTo1/Deepseek R1 shows that:

o RL optimized Chain of Thought can be a highly effective way to scaling test-time

deepseek-rl-lite-preview AIME accuracy with test-time compute scaling
o1 AIME accuracy 66.%
at test time 643
100 -
60
80 A
L ]
) = 501
o
3 2
5 60 - A o S5 o5 B EES N OE SRR B & Dl I LR EST R PO S S I TR AN S TR
©
3 5
(1] O 40
— o &J
®
@ 40 A
© L
Q
o 304
20 ®
=== ol-preview
21 —&— rl-lite-preview (Majority Voting)
201 E —o— rl-lite-preview (Pass@1)
0 10° 10° 10°

test-time compute (log scale) Average number of thought tokens per problem



Realizing LLM Reasoning via Inference-Time Scaling

¢ Core |ldea: Teach/ Force the LLM to generate one or more LONG Chain-of-Thought
(CoT) Paths of Exploration using one or more of the following ways:

Reasoning
models

At least ()
. i
Four different ways to — [ Inference-time scaling
create a Reasoning
LL @ e )
M . .
— LPure reinforcement learning
J

i Reinforcemen learning + E
(_ supervised fine-tuning |

- S
ure supervised fine-tuning
/ distillation

[P
W,




4 main ways to build or improve reasoning capabilities

1) Inference-time compute scaling test-time compute

2) Pure RL (e.g., DeepSeek R1 Zero)

3) RL + SFT (e.g., DeepSeek R1) train-time compute

4) pure SFT (e.g. s1, distilled DeepSeek R1) |

Sebastian Raschka



Training DeepSeek-R1-Zero via “Pure” Reinforcement Learning

RL with

( DeepSeek-V3 (671 B)}

accuracy &
format rewards

i

? DeepSeek-R1-Zero

SFT
(“cold start”)
data

Train with “cold start” data

RL with accuracy, format,
and consistency rewards

g

CoT) (knowledge)
data data

RL with rule-based
verification (math, code)
and human preference

o

DeepSeek-R1 j

— [ Llama 3 & Qwen 2.5 ]

?DeepSeek-m -Distill-Qwen (1.5B - 32B) J

DeepSeek-R1-Distill-Llama (8B & 70B) ]




Training DeepSeek-R1-Zero via “Pure” RL: The “Aha” moment

Question: If a > 1, then the sum of the real solutions of va — Va + x = x is equal to

Response: <think>

To solve the equation ya — Va +x = x, let’s start by squaring both - - -

( a—\/m)z =x2 = a-Va+x=x2

Rearrange to isolate the inner square root term:

(a-x2)2=a+x = a®*-2ax*+(x*)?=a+x = x*-2a®-x+(a®-a)=0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum canbe - - -
We started with the equation:
va-+va+x=x

First, let’s square both sides:
a-Va+x=x* = Va+x=a-x
Next, I could square both sides again, treating the equation: - - -

2

Table 3 | An interesting “aha moment” of an intermediate version of DeepSeek-R1-Zero. The
model learns to rethink using an anthropomorphic tone. This is also an aha moment for us,
allowing us to witness the power and beauty of reinforcement learning.



Training DeepSeek-R1 via Supervised Fine-Tuning (SFT) + RL

( DeepSeek-V3 (671 B)}

? DeepSeek-R1-Zero

Train with “cold start” data

RL with accuracy, format,
and consistency rewards SFT SFT
(CoT) (knowledge)

data data

RL with
accuracy &
format rewards

SFT
(“cold start”)
data

RL with rule-based
verification (math, code)

and human preference
[ [ Llama 3 & Qwen 2.5 ]

DeepSeek-R1 ]

v
?DeepSeek—Fﬁ -Distill-Qwen (1.5B - 32B) ]

[ DeepSeek-R1-Distill-Llama (8B & 70B) J




Performance Comparison of
DeepSeek-R1-Zero (Pure RL) via DeepSeek-R1 (SFT + RL)

Bio, physics &
Math benchmarks ChemllStry Code benchmarks
GPIQA LiveCode
Model AIME 2024 MATH-500 Diamond  Bench CodeForces
pass@l cons@64 pass@1 pass@1 pass@1 rating
OpenAl-ol-mini 63.6 80.0 90.0 60.0 53.8 1820 Liliiher e dsattar
OpenAl-01-0912 74.4 83.3 94.8 77.3 63.4 1843 9
RLonly — DeepSeek-R1-Zero 710 867 95.9 733 50.0 1444
79.8 97.3 71.5 65.9 2029

DeepSeek-R1
SFT+RL =



Training DeepSeek-R1-Distill* via SFT + Distillation

[ DeepSeek-V3 (671B) ]

AIME2024  MATH-500 OFQA ~ lLiveCode (o4opy, e
RL with accuracy Model Diamond Bench
& format rewards pass@1 cons@64 pass@1 pass@1 pass@1 rating
SFT GPT-40-0513 9.3 134 74.6 499 329 759
DeepSeek-R1-Zero (“cold start”) Claude-3.5-Sonnet-1022 16.0 26.7 78.3 65.0 389 717
data OpenAl-ol-mini 63.6 80.0 90.0 60.0 53.8 1820
QwQ-32B-Preview 50.0 60.0 90.6 54.5 419 1316
DeepSeek-R1-Distill-Qwen-1.5B 28.9 52.7 83.9 33.8 169 954
DeepSeek-R1-Distill-Qwen-7B 55.5 83.3 92.8 49.1 37.6 1189
. " N DeepSeek-R1-Distill-Qwen-14B 69.7 80.0 939 59.1 53.1 1481
Train with “cold start” data ——— DeepSeek-R1-Distil-Qwen-32B  72.6 83.3 943 62.1 57.2 1691
DeepSeek-R1-Distill-Llama-8B 50.4 80.0 89.1 49.0 39.6 1205
RL with accuracy, format DeepSeek-R1-Distill-Llama-70B 70.0 86.7 94.5 65.2 57.5 1633
i ’ ' ' SFT FT
and consistency rewards (CoT) (kno?v o DeepSeek-R1-Zero 71.0 95.9 73.3 50.0 1444
data data DeepSeek-R1 79.8 97.3 71.5 65.9 2029
RL with rule-based
verification (math, code)
and human preference

4—[ Llama 3 & Qwen 2.5 ]

DeepSeek-R1 ]

DeepSeek-R1-Distill-Qwen (1.5B - 32B)

l DeepSeek-R1-Distill-Llama (8B & 70B) |




.

[ DeepSeek-V3 (671B)

Summary |
RL with accuracy
& format rewards
. SFT
Training Process ? DeepSeek-R1-Zero (cold tart)
of DeepSeek R1,

R1-Zero, and
R1-Distill* (all

. RL with accuracy, format, .
are Re asonin g andvgonsist:ncyyrewards 1 SFT SFT
— (CoT) (knowledge)
models) data data

from the | | |

RL with rule-based

G enera I P u rp ose verification (math, code) —————¢
and human preference
DeepSeekV3 - S' — ] . [LlamaS&QwenZ.S }
eepSeek-
model

Train with “cold start” data

DeepSeek-R1-Distill-Llama (8B & 70B)

?DeepSeek—Fﬁ-DistiII-Qwen (1.5B - 32B) J




More Details on the Training Process of
DeepSeek R1-zero, R1 (Reasoning models) from General Purpose DeepSeekV3 model

_________________________________________________________________

_______________________________________

~~~~~~~ Deepseek-V3-Base : Deepseek-V3-Base
(cTB/ 378 Activated) : L (c7B/ 378 Activated)
g . m=nEmg <<=
. i ¥ na [~ — DeepSeek—V? | '
] ‘ SUPGWB(O:F:?G T4 < - - | Cod start SFT data | | v
! J _Long CoT data SE———— )
| i} a § ‘ CoT Pl"O"?h‘\g
B ° = A & .
¢ Reascring oriented | |+ Chain of Thought (CoT) :
i RL (GrPO) | consistency reward |
Ly
T R
+ CS SFT + GRPO | Rejection samping | “?:"023) daja (iogk.)
Ik IERErE & croungy
‘ Smaller models: aweh- - S - SFT-2epochs |
| Llama 1 | (800K samples) 3]
: . . J gy I . I = — : J
| ¥ : data (800K) :
! ( DeepSeek-RI-Zero G zvepxh; | 7 ) RL
Rk i (Pur'ely RL model) ‘ (800K samples) Sl i | (Preference reward)
{ !
DicHl Deepseek-RI
‘ espoeetfs { (Main model)

Distillation



Minimal Recipe for Reasoning & Test-time Scaling

s1: Simple test-time scaling

Niklas Muennighoff “ Zitong Yang® Weijia Shi* Xiang Lisa Li* Li Fei-Fei Hannaneh Hajishirzi
Luke Zettlemoyer Percy Liang Emmanuel Candés Tatsunori Hashimoto

Mathematical Problem Solving
(MATH500)

Competition Math

PhD-Level Science Questions

(AIME24) (GPQA Diamond)
95 - 60 60 P
P [ J
285 o 40 .
= 50 o
g 75 20
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40
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Minimal Recipe for Reasoning & Test-time Scaling

Data Test-time scaling
s1K + Budget forcing

ST



s1: Simple Test-Time Scaling [N. Muennihoff Jan/Mar 2025]

Procedure for creating the s1 model:

1. Create a curated SFT dataset, s1K, (a careful selection of rather difficult STEM
questions, e.g. PhD Qualifying exam questions from top schools) containing 1000
training Questions paired with Answers + Reasoning Traces distilled from:

Gemini 2.0 Flash Thinking Experimental (for s1) or DeepSeek R1 (for s1.1)

2. Supervised Fine-tune the Qwen2.5-32B-Instruct LM on the s1K dataset (No RL at all)

3. Control the amount of Test-time compute consumed by the trained model via the
following Budget Forcing mechanism:
- if the model spends more thinking tokens than a preset limit, force it to end ;

- if the model finishes too early (not thinking long enough), append “Wait” to the model’s
current thinking trace and suppress the generation of the end-of-thinking token.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candés, Tatsunori Hashimoto,
s1: Simple test-time scaling, Jan 2025. https://arxiv.org/abs/2501.19393



https://arxiv.org/search/cs?searchtype=author&query=Muennighoff,+N
https://arxiv.org/search/cs?searchtype=author&query=Yang,+Z
https://arxiv.org/search/cs?searchtype=author&query=Shi,+W
https://arxiv.org/search/cs?searchtype=author&query=Li,+X+L
https://arxiv.org/search/cs?searchtype=author&query=Fei-Fei,+L
https://arxiv.org/search/cs?searchtype=author&query=Hajishirzi,+H
https://arxiv.org/search/cs?searchtype=author&query=Zettlemoyer,+L
https://arxiv.org/search/cs?searchtype=author&query=Liang,+P
https://arxiv.org/search/cs?searchtype=author&query=Cand%C3%A8s,+E
https://arxiv.org/search/cs?searchtype=author&query=Hashimoto,+T

Creating the s1K dataset: Data Collection followed by Data filtering

Data: Collect 59K questions Data Filtering
ST-prob ooy s _
Quality ‘
i -sided die. What is the expected value o 52K
s1-teasers Suppose you roll three f 1?r?e|o%v:sfrc§u\;vht the expected value of N
Difficulty ‘

24K
J{gh 1IPh@" Diversity ‘

~~~~~~~~~~~~~~~~~~~~~~~~~~
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Distilling Reasoning Traces & Answers

An often-repeated fun fact is that humans produce more power per unit volume than stars. If the sun were the
same size, but it produced the same amount of power per unit volume as a human, what would its surface
temperature be?...

s1: Google Gemini s1.1: DeepSeek r1
The problem asks for the surface temperature of Okay, so there's this fun fact saying that humans
the sun if it had the same size but produced produce more power per unit volume than stars.
power per unit volume as a human. The question is asking if the Sun were the same
size as a human (but with the same power per
First, let's find the power density of a human... unit volume as a human), what would its surface

temperature be? The answer choices are given,
and | need to figure out which one is correct...



Composition of s1K dataset & Performance of the s1-32B model
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Economics Qle%?:l);?:; 1000 17000 800000 N/A
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Figure 2. s1K and s1-32B. (left) s1K is a dataset of 1,000 high-quality, diverse, and difficult questions with reasoning traces. (right)s1-32B,
a 32B parameter model finetuned on s1K is on the sample-efficiency frontier. See Table 1 for details on other models.



Test-time Scaling via Budget Forcing for the s1 model

CHow many r in raspberry? Question)

ﬁet's break down the process of counting the letter 'r' in the

word "raspberry” ...

* First letter: 'r' - This is an 'r', count = 1.

* Second letter: 'a' - Not an 'r', count remains 1 ...

* Sixth letter: 'e' - Not an 'r', count remains 1.

* Seventh letter: 'r' - Thisis an 'r', count = 2.

* Eighth letter:'y' - Not an 'r', count remains 2 ...

The number of 'r's in "raspberry" is 2.
et‘s re-read the question carefully. It asks "How many r
inraspberry? ...*r-a-s-p-b-e-r-r-y..*First'r'..*
Second 'r'... * Third 'r" ... Count =3 ... Reasoning trace /

My initial s incorrect due to a quick reading of
the word{Final Answer:|The final answer is|3]  Response

Inject “Wait” token to get the \ )
model to generate more tokens Inject “Final Answer:” token to get the LLM to stop
and self-correct it self generating tokens

[llustration of "wait" token insertion to control the length of the output. Annotated
figure from https://arxiv.org/abs/2501.19393.



Correlation b/w Tokens-generated and Response Accuracy by s1

Mathematical Competition

Problem Solving
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Ablation: Sequential and Parallel Test-time Scaling

Competition Math PhD-Level Science Questions
(AIME24) (GPQA Diamond)
60 62
o0 : . 0
Forcing 2048/4096 max thinking ° Sequential scaling ' 60% accuracy
tokens P via Forcing with s1 , "\/
58 d
< @ 3 /
<40 = /
o 354 /
o © /
a @] 8 ‘ v
o Qo = ey
= <50 POasul LT e
Ignoring end-of-thinking 2x/4x/6x and ’.¢’ Parallel scaling via Majority
20

appending “Wait” thus forcing it to continue

voting with base model
& reasoning when it tries to stop

(Qwen2.5-32B-Instruct)

100,000 1 million
Output tokens (sum over all questions)

46

1024 2048 4096 8192
Average thinking time (tokens)

(a) Sequential scaling via budget forcing (b) Parallel scaling via majority voting

Figure 4. Sequential and parallel test-time scaling. (a): Budget forcing shows clear scaling trends and extrapolates to some extent. For

the three rightmost dots, we prevent the model from stopping its thinking 2/4/6 times, each time appending “Wait” to its current reasoning

trace. (b): For Qwen2.5-32B-Instruct we perform 64 evaluations for each sample with a temperature of 1 and visualize the performance
when majority voting across 2, 4, 8, 16, 32, and 64 of these.



Ablation study on the choice of the Budget-Forcing string for s1

Table 4. Budget forcing extrapolation ablations. We compare
ignoring the end-of-thinking delimiter twice and appending none
or various strings.

AIME MATH GPQA
2024 500 Diamond

No extrapolation 50.0 93.0 57.6

2x without string 50.0 90.2 55.1
2x “Alternatively” | 50.0 92.2 59.6
2x “Hmm” 50.0 93.0 59.6
2x “Wait” 53.3 93.0 59.6

Model

/

“Wait” tokens perform better than “Hmm”
tokens



Comparing s1-32B’s Performance with other Reasoning models

Table 5. s1-32B is an open and sample-efficient reasoning model. We evaluate s1-32B, Qwen, and Gemini (some entries are unknown
(N.A)), see §4). Other results are from the respective reports (Qwen et al., 2024; Team, 2024; OpenAl, 2024; 2025; DeepSeek-Al et al.,
2025; Labs, 2025; Team, 2025) except for AIME 2025 (Ye et al., 2025b). # ex. = number examples used for reasoning finetuning; BF =

budget forcing.
Model # Examples MATHS500 GPQA AIME 2024 AIME 2025
API only
03-mini-low N/A 95.8 70.6 56.3 42.1
03-mini-medium N/A 97.3 76.8 75.8 70.4
03-mini-high N/A 97.9 79.7 83.8 80.9
Open Weights
QwQ-32B N.A. 90.6 54.5 46.7 32.7
rl >800K 07.3 71.5 79.8 70.0
rl-distill-Llama-70B 800K 94.5 65.2 57.1 56.3
rl-distill-Qwen-14B 800K 93.9 59.1 61.7 48.0
rl-distill-Qwen-32B 800K 94.3 62.1 58.3 49.6
Open Weights and Open Data
LIMO 817 94.8 66.7 56.3 44.6
sl w/o BF 1K 92.6 56.6 50.0 26.7
s1 with Budget Forcing “Wait” 1x 1K 92.8 59.6 53.3 30.0
s1 with Budget Forcing “Wait” 2x 1K 93.0 59.6 53.3 333
s1 with Budget Forcing “Wait” 4x 1K 92.2 58.6 56.7 36.7
s1.1 w/o BF 1K 94.4 60.6 56.7 50.0
s1.1 with Budget Forcing “Wait” 1x 1K 95.4 62.6 56.7 50.0

s1.1 with Budget Forcing “Wait” 2x 1K 95.4 63.6 56.7 50.0
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Recent Work on how to determine Inference-time Compute

LEARNING HOW HARD TO THINK:
INPUT-ADAPTIVE ALLOCATION OF LM COMPUTATION

Mehul Damani* Idan Shenfeld Andi Peng

Andreea Bobu Jacob Andreas
Massachusetts Institute of Technology
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+» Recent work shows that models can be fine-tuned to cheaply assess difficulty.

Mehul Damani et al., “Learning How Hard to Think: Input-Adaptive Allocation of LM Computation,” Oct 2024, https://arxiv.org/pdf/2410.04707



Less (but Good Training Examples) is More for Reasoning
LIMO: Less is More for Reasoning

Yixin Ye* Zhen Huang* Yang Xiao Ethan Chern Shijie Xia Pengfei Liu’

SJTU, SII, GAIR

Abstract

We present a fundamental discovery that challenges our understanding of how complex reasoning emerges
in large language models. While conventional wisdom suggests that sophisticated reasoning tasks demand
extensive training data (often > 100, 000 examples), we demonstrate a striking phenomenon: complex
mathematical reasoning abilities can be effectively elicited with surprisingly few examples. This find-
ing challenges not only the assumption of massive data requirements but also the common belief that
supervised fine-tuning primarily leads to memorization rather than generalization. Through comprehen- —@— NuminaMath @ In-Domain
sive experiments, our proposed model LIMO demonstrates unprecedented performance and efficiency in —_ @ W UMO(Ours):  {EE:Outiof:Domeln
mathematical reasoning. With merely 817 curated training samples, LIMO achieves 57.1% accuracy on 100+ 1% 4

the highly challenging AIME benchmark and 94.8% on MATH, improving the performance of previous
strong SFT-based models from 6.5% to 57.1% on AIME and from 59.2% to 94.8% on MATH, while only 75 100,000 samples 817 samples
using 1% of the training data required by previous approaches. Most remarkably, LIMO demonstrates
exceptional out-of-distribution generalization, achieving 40.5% absolute improvement across 10 diverse Grade
benchmarks, outperforming models trained on 100x more data, directly challenging the prevailing notion 50 School
that SFT inherently leads to memorization rather than generalization. Synthesizing these pioneering
results, we propose the Less-Is-More Reasoning Hypothesis (LIMO Hypothesis): In foundation models 778% 4
where domain knowledge has been comprehensively encoded during pre-training, sophisticated reasoning 254
capabilities can emerge through minimal but precisely orchestrated demonstrations of cognitive processes.

This hypothesis posits that the elicitation threshold for complex reasoning is not inherently bounded by 0 =
the complexity of the target reasoning task, but fundamentally determined by two key factors: (1) the
completeness of the model’s encoded knowledge foundation during pre-training, and (2) the effectiveness

of post-training examples, which serve as “cognitive templates” that show the model how to effectively [

Kaoyan

MATHEOO
MATH500

Minerva

Gaokao Olympiad
NuminaMath LIMO (Ours) CHMath Bench

utilize its existing knowledge base to solve complex reasoning tasks. To facilitate reproducibility and
future research in data-efficient reasoning, we release LIMO as a comprehensive open-source suite at
https://github.com/GAIR-NLP/LIMO.

completely same backbone superior performance across
10 benchmarks

1% data — 778% gain on AIME24 (pass@1)

Figure 1: LIMO achieves substantial improvement over NuminaMath with fewer samples while excelling
diverse mathematical and multi-discipline benchmarks.

Yixin Ye*, Zhen Huang*, et al., “LIMO: Less is More for Reasoning”, Feb 2025, https://arxiv.org/pdf/2502.03387



LIMO vs. Reinforcement Learning Scaling

Table 2: Comparative Analysis of LIMO and RL Scaling Approaches

Aspect RL Scaling (e.g., 01, R1) LIMO
An implementation of the general principle: The fundamental principle: reasoning
First Principle searching for optimal reasoning trajectories capabilities exist and need to be activated by

through RL

high-quality reasoning trajectories

Solution Nature

Discovers reasoning trajectories through
extensive RL-based exploration

Directly constructs high-quality reasoning
trajectories based on cognitive understanding

How to efficiently search for effective

How to identify and construct optimal

Core Challenge . . . . . reasoning trajectories that activate existing
reasoning trajectories in a large solution space s <
capabilities
Methodology Implicit trajectory dlSC(.)Véry Fhrough Explicit trajectory design through cognitive
large-scale RL optimization templates
Search Strategy Broad exploratlon. of solution space using Targeted exploragon .gulded by cognitive
computational resources principles
Reso.urce Resource-intensive search process Resource-efficient direct construction
Efficiency
Generalization Through extensive sampling of trajectory Through understanding of fundamental

space

reasoning patterns

Yixin Ye*, Zhen Huang*, et al., “LIMO: Less is More for Reasoning”, Feb 2025, https://arxiv.org/pdf/2502.03387
Refer to some additional commentary from https://news.ycombinator.com/item?id=42991676
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