
IERG5050 AI Foundation Models, Systems & Applications
Spring 2025

Teaching LLMs to Reason and Reasoning LLMs

Prof. Wing C. Lau
wclau@ie.cuhk.edu.hk

http://www.ie.cuhk.edu.hk/wclau
1

mailto:wclau@ie.cuhk.edu.hk
http://www.ie.cuhk.edu.hk/wclau

Many of the slides in this lecture are adapted from the sources below. Copyrights belong to the original authors.
• Xinyun Chen, “Inteference-Time Techniques for LLM Reasoning,” Guest Lecture for UC Berkeley MOOC on Advanced Large Language

Model Agents, Spring 2025, https://www.youtube.com/live/g0Dwtf3BH-0, https://rdi.berkeley.edu/llm-agents-mooc/slides/inference_time_techniques_lecture_sp25.pdf,

• Denny Zhou, “Teaching Language Models to Reason”, Guest Lecture for UC Berkeley MOOC on Large Language Model Agents, Fall
2024, https://rdi.berkeley.edu/llm-agents-mooc/slides/llm-reasoning.pdf, https://www.youtube.com/live/QL-FS_Zcmyo, https://dennyzhou.github.io/LLM-Reasoning-Berkeley.pdf.
https://dennyzhou.github.io/LLMs-Reason-Taiwan-2023.pdf, https://dennyzhou.github.io/LLMs-Reason-2023-Harvard-Yale.pdf

• Sebastian Raschka, “Understanding Reasoning LLMs,” Ahead of AI, Feb 5, 2025, https://magazine.sebastianraschka.com/p/understanding-reasoning-llms

• Sebastian Raschka, “The State of LLM Reasoning Models: Inference-Time Compute Scaling Methods,” Ahead of AI, Mar 8, 2025,
https://magazine.sebastianraschka.com/p/state-of-llm-reasoning-and-inference-scaling

• Sasha Rush, Daniel Ritter, “Speculations on Test-Time Scaling (o1),” https://www.youtube.com/watch?v=6PEJ96k1kiw, https://srush.github.io/awesome-o1/o1-tutorial.pdf,
https://github.com/srush/awesome-o1

• Charlie Snell, “Scaling LLM Test-Time Compute,” AI4All, https://www.youtube.com/watch?v=OXwGp9YeuBg,
https://docs.google.com/presentation/d/1UdmRaXwcRT341G77ycnbuhvKCMEWKJ5Sxv7Ia2JLYEE/edit#slide=id.p

• Charlie Snell et al, “Scaling LLM Test-Time Compute Optimally can be more effective than Scaling Model Parameters,” https://arxiv.org/abs/2408.03314

• Noah Goodman, “Learning to Reason, Insights from Language Modeling,” MIT Center for Brains, Minds+ Machines (MITCBMM) seminar,
https://www.youtube.com/watch?v=YR9EztOF0R8,

• Ben Prystawski, Michael Y. Li, Noah D. Goodman, “Why think step by step ? Reasoning emerges from the Locality of Experience,” NeurIPS 2023,
https://neurips.cc/media/neurips-2023/Slides/73821.pdf, https://neurips.cc/virtual/2023/oral/73821

• Maarten Grootendorst, “A Visual Guide to Reasoning LLMs – Exploring Test-Time Compute Techniques and DeepSeek-R1,” Feb 3, 2025,
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms

• Jason Weston, “Learning to Reason with LLMs,” Guest Lecture for UC Berkeley MOOC on Advanced Large Language Model Agents, Spring 2025,
https://www.youtube.com/live/_MNlLhU33H0, https://rdi.berkeley.edu/adv-llm-agents/slides/Jason-Weston-Reasoning-Alignment-Berkeley-Talk.pdf

• Logesh Kumar Umapathi, “Unlocking Reasoning and Planning abilities in Large Language Models,” Conf42 Machine Learning – Online, May, 2023,
https://www.youtube.com/watch?v=1K6M7o7FTy4, https://conf42.github.io/static/slides/Logesh%20Kumar%20Umapathi%20-%20Conf42%20Machine%20Learning%202023.pdf,

• Overview of Stanford CS25:Transformer United V4, Spring 2024, https://docs.google.com/presentation/d/1oXPs3LXtIVIsVbwTyGjAWj_aWvak9c1uNC4uhkS6glk/edit?usp=sharing

• Aske Plaat et al, “Reasoning with Large Language Models, a Survey,” July 2024, https://arxiv.org/pdf/2407.11511

• Jie Huang, Kevin C.C. Chang, “Towards Reasoning in Large Language Models,” ACL Findings 2023, https://aclanthology.org/2023.findings-acl.67.mp4,
https://aclanthology.org/2023.findings-acl.67.pdf

• Hanna Hajishirzi, “Open Training Receipes for Reasoning in Language Models,” Guest Lecture for UC Berkeley MOOC on Advanced Large Language
Model Agents, Spring 2025, https://rdi.berkeley.edu/llm-agents-mooc/slides/OLMo-Tulu-Reasoning-Hanna.pdf, https://www.youtube.com/live/cMiu3A7YBks

• Misguided Attention: a suite of testing prompts: https://github.com/cpldcpu/MisguidedAttention, https://huggingface.co/posts/Severian/375067343900874

Acknowledgements

2

https://www.youtube.com/live/g0Dwtf3BH-0
https://rdi.berkeley.edu/llm-agents-mooc/slides/inference_time_techniques_lecture_sp25.pdf
https://rdi.berkeley.edu/llm-agents-mooc/slides/llm-reasoning.pdf
https://www.youtube.com/live/QL-FS_Zcmyo
https://dennyzhou.github.io/LLM-Reasoning-Berkeley.pdf
https://dennyzhou.github.io/LLMs-Reason-Taiwan-2023.pdf
https://dennyzhou.github.io/LLMs-Reason-2023-Harvard-Yale.pdf
https://magazine.sebastianraschka.com/p/understanding-reasoning-llms
https://magazine.sebastianraschka.com/p/state-of-llm-reasoning-and-inference-scaling
https://www.youtube.com/watch?v=6PEJ96k1kiw
https://srush.github.io/awesome-o1/o1-tutorial.pdf
https://github.com/srush/awesome-o1
https://www.youtube.com/watch?v=OXwGp9YeuBg
https://docs.google.com/presentation/d/1UdmRaXwcRT341G77ycnbuhvKCMEWKJ5Sxv7Ia2JLYEE/edit
https://arxiv.org/abs/2408.03314
https://www.youtube.com/watch?v=YR9EztOF0R8
https://neurips.cc/media/neurips-2023/Slides/73821.pdf
https://neurips.cc/virtual/2023/oral/73821
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms
https://www.youtube.com/live/_MNlLhU33H0
https://rdi.berkeley.edu/adv-llm-agents/slides/Jason-Weston-Reasoning-Alignment-Berkeley-Talk.pdf
https://www.youtube.com/watch?v=1K6M7o7FTy4
https://conf42.github.io/static/slides/Logesh%20Kumar%20Umapathi%20-%20Conf42%20Machine%20Learning%202023.pdf
https://docs.google.com/presentation/d/1oXPs3LXtIVIsVbwTyGjAWj_aWvak9c1uNC4uhkS6glk/edit?usp=sharing
https://aclanthology.org/2023.findings-acl.67.mp4
https://aclanthology.org/2023.findings-acl.67.pdf
https://rdi.berkeley.edu/llm-agents-mooc/slides/OLMo-Tulu-Reasoning-Hanna.pdf
https://www.youtube.com/live/cMiu3A7YBks
https://github.com/cpldcpu/MisguidedAttention
https://huggingface.co/posts/Severian/375067343900874

Two Modes of Human Thought:
Thinking, FAST and SLOW

System 1 vs. System 2

2 + 2 = 17 x 24 =

Early LLMs seem to only have a System 1
(as they were developed mainly based on the so-called “Deep Learning Hypothesis”)

words

the cat sat on a

mat

Prompting and Fine-Tuning can (and only) yield a (better) System 1 !

Source: Ilya Sutskever: Sequence to sequence learning with neural networks,
NeurIPS 2024 Test of Time Award Talk.

System 2

System 1: generates the proposals (used in speed chess)
System 2: Need to “Think” more / Reason, e.g. keep track of the
tree (used in competitions)

What do we mean by an LLM knows how to “Reason” ?

“Reasoning is decomposing a potentially complex task into simpler
subtasks the LM can solve more easily by itself or using tools. There
exist various ways to decompose into subtasks, such as recursion or
iteration. In that sense, reasoning is akin to planning.”

from [G. Mialon et al, Augmented Language Models: a Survey] of Meta AI.

What do we mean by an LLM knows how to “Reason” ?

● For LLMs,
“Reasoning” is
commonly defined as
the process of
answering questions
that require complex,
multi-step generation
with intermediate
steps.

○ As opposed to answer
single-step Factual-
recall type of questions

Here, "Reasoning" is used at two different levels:
1) processing the input and generating via multiple intermediate steps and
2) providing some sort of reasoning as part of the response to the user

Another Example of an LLM’s Reasoning in Action

Why do we want LLMs to be able to “Reason” ?
● To increase Few-shot Learning Ability

“Humans (even a small child) can learn from relatively few examples because Human can
“Reason.”” from Dr. Denny Zhou of Google DeepMind/

● To improve Out-of-distribution Robustness
Humans possess the ability to generalize beyond familiar scenarios.

● To provide Explainability
Humans are capable of providing explanations for their decisions or predictions,

whereas machines (especially deep neural networks) are often considered “black box” within
limited explainability.

Ref: Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. 2023.

There are some indications that LLMs are able to reason, including:

► High performance on various tasks requiring reasoning (Suzgun et al.,
2022)

► The ability to reason step-by-step with chain-of-thought prompting (Wei et
al., 2022)

► The reflection of human-like content effects on reasoning (Dasgupta et al.,
2022)

10Can LLMs really reason ?

Ref: Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. 2023.

But there are also observations that suggest LLMs may not be capable of reasoning:
► LLMs still struggle with tasks that require complex reasoning (Valmeekam et al.,

2022; Han et al., 2022; Ruis et al., 2022)
► The performance of LLMs has been found to be sensitive to the frequency of certain

terms (Razeghi et al., 2022; Jung et al., 2022)
► Language models have been found to struggle with associating relevant information

that they have memorized (Huang et al., 2022)
► “It is not yet fully understood whether the LM is really reasoning, or simply producing a

larger context that increases the likelihood of correctly predicting the missing tokens.”
(G. Mialon et al., “Augmented Language Models: a Survey 2023).

► Misguided Attention: a suite of testing prompts: https://github.com/cpldcpu/MisguidedAttention

► Some mistakes made by LLMs seems to show they do not actually know reasoning

11
Can LLMs really reason ?

Ref: Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. 2023.

https://github.com/cpldcpu/MisguidedAttention

Generated by gpt-4o’s tokenizer.

Try it out at:
https://tiktokenizer.vercel.app/

Early LLMs (ChatGPT) had Unreliable Reasoning Even On
Simple Tasks

Probably due to tokenization!
Or was it due to Sept 11 ?

https://tiktokenizer.vercel.app/

Do LLMs really know how to “reason” ?
Even for Frontier LLMs, their responses to certain kind of prompts seem to indicate that they
actually do NOT understand the real concept but merely perform “pattern matching”. In other
words, they are not really “reasoning”, e.g.,

• LLMs can be easily distracted by Irrelevant Context/ Content

• Premise Order matters in LLM “Reasoning”, but they should not be !

• LLMs cannot Self-correct reliably without an oracle: while allowing LLMs to review self-
generated responses can sometimes help to correct inaccurate answers, such review
may also change correct answers into incorrect ones.

References:
• Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schärli, and Denny Zhou. Large

Language Models Can Be Easily Distracted by Irrelevant Context. ICML 2023.
• Xinyun Chen, Ryan A Chi, Xuezhi Wang, Denny Zhou. Premise Order Matters in Reasoning with Large Language Models. ICML

2024.
• Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language

Models Cannot Self-Correct Reasoning Yet. ICLR 2024.
• Misguided Attention: a suite of testing prompts: https://github.com/cpldcpu/MisguidedAttention

https://github.com/cpldcpu/MisguidedAttention

LLM readily distracted by Irrelevant Context/ Content

LLM readily distracted by Irrelevant Context/ Content

v Simply adding irrelevant sentences can still hurt performance, e.g.

LLM readily distracted by Irrelevant Context/ Content

BUT

Premise Order matters for LLMs

Xinyun Chen, Ryan A Chi, Xuezhi Wang, Denny Zhou. Premise Order Matters in Reasoning with Large Language Models. ICML 2024.

Premise Order matters for LLMs

Xinyun Chen, Ryan A Chi, Xuezhi Wang, Denny Zhou. Premise Order Matters in Reasoning with Large Language Models. ICML 2024.

Premise Order matters for LLMs

Xinyun Chen, Ryan A Chi, Xuezhi Wang, Denny Zhou. Premise Order Matters in Reasoning with Large Language Models. ICML 2024.

v When the rules relevant to the query are randomly ordered, 30+ points
performance drop across all frontier LLMs !

LLM cannot self-correct (reasoning) reliably without an Oracle

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. ICLR 2024.

LLM cannot self-correct (reasoning) reliably without an Oracle

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. ICLR 2024.

Self-correcting leads to Worse Results

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. ICLR 2024.

Reported Improvements need Oracle answers

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. ICLR 2024.

Luckily, some applications do have an Oracle available and can be leveraged !

How to Teach LLMs to Reason ?

How to “teach” / lead / force LLMs to Reason ?

v Type 1 Approaches: Using some Prompting techniques for the LLM, e.g. Chain-
of-Thought (CoT) prompting

v Type 2 Approaches: Make LLM perform Search and Selection from Multiple
Candidates

=> Increase the WIDTH to explore solution space

v Type 3 Approaches: Make LLM perform Iterative self-improvement
=> Increase the DEPTH to reach the final solution

Common Theme:

Make / Lead / Force LLM to use more Token Budget (i.e. “Think” more) before
reaching the final solution !

i.e. Trigger/ Make the LLM to perform “System 2” like behavior of Human!

Type 1 Approaches: Teach LLMs to Reason via Prompting

Start with a Simple, Small Example – Last Letter Concatenation

v Rule: Take the last letter of each word and concatenate them to form the output

Attempt to solve it by Machine Learning / Deep Learning,
say, using a Seq2Seq Encoder-Decoder ? Needs Tons of Labelled Data !

v Can hardly call it “AI” as it requires vast amount of labelled data and training to
do such a simple task !

v How can this problem be solved by an LLM ?

Recall: What an LLM is, What does it do ?

v LLM is a Transformer model trained to predict the Next Word, e.g.
“AI is the future”

v After trained with many sentences, e.g. text from the Internet, we can have:

v More like training parrots to mimic human language !

Few-shot Prompting for Last-Letter-Concatenation DID NOT WORK !

Sources:
Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.
T.B. Brown et al., Language models are few-shot learners, 2020, arXiv preprint arXiv:2005.14165.

Let’s add “reasoning process” before “answer”

Let’s add “reasoning process” before “answer”

Actually, ONE demonstration is enough, like Humans !

100% accuracy with only one demonstration example !

Q: “Elon Musk”
A: the last letter of "Elon" is "n".
The last letter of "Musk" is "k".
Concatenating "n", "k" leads to
"nk". so the output is "nk"

Q: “Barack Obama”
A:

A: the last letter of "Barack"
is "k". The last letter of
"Obama" is "a".
Concatenating "k", "a" leads
to "ka". So, the output is
"ka".

J. Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. NeurIPS 2022.

LLM

This approach is the so-called:
Teaching LLM to Reason via Chain of Thought (CoT) Prompting

https://arxiv.org/abs/2201.11903

Key Idea (ingredient) behind the Chain-of-Thought approach:

Derive the Final Answer through Intermediate Steps !

GSM8K: <Problem, Intermediate Steps, Answer>

Show Your Work:
Scratchpads for Intermediate Computation with Language Models

Chain-of-Thought (CoT) Prompting

Source: Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou.
Chain-of-thought prompting elicits reasoning in large language models. NeurIPS 2022

100x to 1000x more Data Efficient than
supervised SOTA in the literature !

CoT Performance scales with LLM size

Source:
Jason Wei et al., Chain-of-thought prompting elicits reasoning in large language models, NeurIPS 2022
Jason Wei et al., Emergent Abilities of Large Language Models, TMRL 2022.

Zero-shot CoT significantly outperforms Zero-shot

Source: Kojima et al., Large Language Models are Zero-Shot Reasoners, NeurIPS 2022

Inclusion of Intermediate Steps is all that matters !

v Regardless of Training, Fine-Tuning or Prompting, when provided with examples
that include Intermediate Steps, LLMs will generate responses that also include
intermediate steps !

43

Why Intermediate Steps are helpful ?

► Chain-of-thought (CoT) - series of intermediate reasoning steps

► Shown to improve LLM performance on complex reasoning tasks

► Inspired by human thought process: decompose multi-step problems

► Also provides an interpretable window into behavior of the model (how it

arrived at an answer, where it goes wrong in its reasoning path)

► CoT exploits the fact that deep down in the model's weights, it knows more

about the problem than just prompting it to get a response

44
Reasoning: Sufficient? Intermediate Guidance Helps…

Ref: https://arxiv.org/abs/2201.11903

https://arxiv.org/abs/2201.11903

Why Thinking Step-by-Step can help ?
v Why adding Intermediate Steps can help LLMs, which, after all, are merely

Statistical Inference models, to be better in answering difficult questions ?

Hypothesis from B. Prystawski, M.Y. Li, N.D.Goodman:

References:

• Ben Prystawski, Michael Y. Li, Noah D. Goodman, “Why think step by step ? Reasoning emerges from the Locality of Experience,” NeurIPS 2023,
https://neurips.cc/virtual/2023/oral/73821, https://neurips.cc/media/neurips-2023/Slides/73821.pdf,
• Noah Goodman, “Learning to Reason, Insights from Language Modeling,” MIT Center for Brains, Minds+ Machines (MITCBMM) seminar,

https://www.youtube.com/watch?v=YR9EztOF0R8,

• S.C.Y. Chan et al., “Data Distributional Properties Drive Emergent In-Context Learning in Transformers,” NeurIPS 2022.

“Our results suggest that chain-of-thought reasoning is
useful for language models because:

1) direct prediction is inaccurate for some inferences
because the relevant variables are rarely seen together in
training and

2) chain-of-thought reasoning improves estimation by
incrementally chaining local statistical dependencies that
are observed frequently in training.

We also find that the combination of locally structured
training data and reasoning with self-generated
intermediate variables yields much greater data efficiency
than training on data containing all variables.”

https://neurips.cc/virtual/2023/oral/73821
https://neurips.cc/media/neurips-2023/Slides/73821.pdf
https://www.youtube.com/watch?v=YR9EztOF0R8

Thinking Step-by-Step due to Locality of Experience
Experiment Setup:

References:

• Ben Prystawski, Michael Y. Li, Noah D. Goodman, “Why think step by step ? Reasoning emerges from the Locality of Experience,” NeurIPS 2023,
https://neurips.cc/virtual/2023/oral/73821, https://neurips.cc/media/neurips-2023/Slides/73821.pdf,
• Noah Goodman, “Learning to Reason, Insights from Language Modeling,” MIT Center for Brains, Minds+ Machines (MITCBMM) seminar,

https://www.youtube.com/watch?v=YR9EztOF0R8,

https://neurips.cc/virtual/2023/oral/73821
https://neurips.cc/media/neurips-2023/Slides/73821.pdf
https://www.youtube.com/watch?v=YR9EztOF0R8

Why Intermediate Steps can help ?

Theoretical Results by Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma, “Chain of
Thought Empowers Transformers to Solve Inherently Serial Problems,” ICLR 2024

TL;DR: We show both theoretically and empirically transformers with
polynomial steps of CoT can simulate polysize circuits and thus are strictly more
expressive than transformers without CoT.

v Transformer generating Intermediate Steps can solve any Inherently serial
problem as long as its depth exceeds a constant threshold

v Transformer generating direct answers either requires a huge depth to solve or
cannot solve at all

Many Practical Implications of these Theorems

v Generating more Intermediate Steps

v Combining LLM with External Tools/ Search

v Diagnosing LLM failures and limitations

v And many more…

Reference: Zhiyuan Li, Hong Liu, Denny Zhou and Tengyu Ma, “Chain of Thought Empowers Transformers to Solve Inherently Serial Problems,”
ICLR 2024.

BUT Zero-shot CoT still performs worse than few-shot CoT

Source: Kojima et al., Large Language Models are Zero-Shot Reasoners, NeurIPS 2022

Next: Instruct LLM to generate exemplars itself via
Analogical Prompting

v Prompt the LLM to first
RECALL relevant exemplars,
before solving the current
problem

Pros:

v Exemplars are self-generated
by LLMs, no manual crafting

v Exemplars are tailored to
individual problems

Source: Yasunaga et al., Large Language Models as Analogical Reasoners, ICLR 2024

Motivated by Human Analogical Reasoning

v Humans are not explicitly given demonstrations every time for a new task

v Instead, humans intrinsically recall from past relevant experience

Source: How to Solve it, George Polya, 1945.

Analogical Prompting outperforms
Zero-shot CoT & manual Few-shot CoT

Analogical
Prompting

Analogical
Prompting

Analogical
Prompting

Stronger LLMs are Better Analogical Reasoners

v Weaker LLMs benefit less from analogical prompting, though it does not hurt
the zero-shot performance

v With stronger LLMs, analogical prompting outperforms CoT with manually-
designed or retrieved exemplars

○ The generated CoT is more tailored to the underlying LLM

Other Strategies to improve Reasonings

v Recent samples that have been proposed and studied by DeepMind researchers:
► Explicitly Instruct the LLM with the desired Reasoning Strategies for Problem Solving

► Least-to-most Prompting: Easy-to-Hard Generalization via Decomposition [Zhou et
al., ICLR2023]

► Self-Discover: Instruct LLM to compose Reasoning Structures for each Task [Zhou
et al., NeurIPS 2024]

► Use LLMs for automated prompt-turning [Zhou et al., LLMs are Human-level Prompt
Engineers, ICLR2023]

► Chain-of-Thought Reasoning without Prompting (aka CoT decoding) [Wang, Zhou
NeurIPS 2024] Empirical observations show some of the Top-K decoding paths (beyond
the most probable one) actually contains / corresponds to valid CoT reasoning paths.
One can develop an algorithm to “sift” through the Top-K decoding paths and isolate the
most reliable paths for model output.

Least-to-most Prompting: Easy-to-Hard Generalization via Decomposition

Source: Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.

Least-to-most Prompting: Easy-to-Hard Generalization via Decomposition

Source: Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.

Example: Solving the SCAN compositional generalization benchmark

Source: Zhou et al., Least-to-Most Prompting Enables Complex Reasoning in Large Language Models, ICLR 2023.

CoT without Prompting via CoT-Decoding [Wang & Zhou, NeurIPS 2024]

While most existing work suggest that LLMs falter in such direct-QA scenarios on reasoning (Cobbe et al., 2021a; Kojima et al., 2022;
Nye et al., 2021; Wei et al., 2022), our findings reveal a nuanced picture. We observe that LLMs indeed struggle with reasoning when
relying solely on greedily decoded paths. However, when we consider alternative paths among the top-𝑘 tokens, CoT reasoning patterns
emerge naturally within the decoding trajectories of LLMs. In addition, we have observed an interesting pattern: the model demonstrates
increased confidence in the final answer when a CoT reasoning path is present in the decoding process. As illustrated in Figure 1, this is
evident where paths 2 and 4 show heightened certainty in arriving at the correct answer “8”, contrasting sharply with the high
uncertainty in paths that lead to the incorrect “5”. Leveraging this phenomenon, we develop a method to sift through the top-𝑘 decoding
paths, which we refer to as CoT-decoding, thereby isolating the most reliable paths for model output.

Self-Discover: Instruct LLM to compose Task-specific Reasoning Structures
[Zhou et al., NeurIPS 2024]

► Find CoT to have a more rigid definition and format

► Further, its advantages are for particular domains and types of questions

► Task is challenging and requires multi-step reasoning

► Scaling curve of the problem/task is relatively flat

► Humans think through different types of problems in multiple ways

► Our “scratchpad” is more flexible and open to different reasoning structures

► Maybe able to generalize CoT to be more flexible somehow

Generalizing Chain-of-Thought Reasoning

► Chain-of-thought (CoT) - series of intermediate reasoning steps

► Reasoning and Acting (ReAct)

► Tree-of-Thoughts

61Generalization of the CoT approach

Ref: https://arxiv.org/abs/2201.11903

https://arxiv.org/abs/2201.11903

ReAct = Reasoning and Acting

Example of ReAct w/ a Zero-Shot ReAct Prompt

Source: Shunyu Yao of OpenAI, “LLM Agents: Brief History and Overview”, talk for Berkeley’s MOOC CS294/194-196 on Large Language Model Agents, Fall 2024.

Example of ReAct

Source: Shunyu Yao of OpenAI, “LLM Agents: Brief History and Overview”, talk for Berkeley’s MOOC CS294/194-196 on Large Language Model Agents, Fall 2024.

Example of ReAct

Source: Shunyu Yao of OpenAI, “LLM Agents: Brief History and Overview”, talk for Berkeley’s MOOC CS294/194-196 on Large Language Model Agents, Fall 2024.

► ToT: “consider multiple different reasoning paths and self-evaluating choices to

decide the next course of action, as well as looking ahead or backtracking

when necessary to make global choices” - [More details Later]

66

Tree of Thoughts (System 2 like)

Ref: https://arxiv.org/abs/2305.10601

Like tree search in Chess,
but in language.

We want to “think”: convert time to accuracy.

https://arxiv.org/abs/2305.10601

Summary so far: What CoT brings to LLM Reasoning ?
v Under the Chain-of-Thought approach, Intermediate Steps are added before the final model output is

generated.
v Many ways to improve CoT performance at inference time:

v Few-shot prompting with labeling of thoughts

v Instruction prompting to trigger CoT generation
v Instruct the LLM to use analogy to create relevant exemplars for the task on hand

v Instruct the LLM to automate & optimize the prompt design

v Instruct the LLM to apply decomposition techniques on the problem
v CoT decoding

[Later: we will see how to improve the “reasoning” results by examining/ comparing MULTIPLE CoT paths!]

These techniques induce the use of more token budget to generate a single solution!
v CoT looks like Search / Planning in a Classical sense !
v In general, More complex questions => Longer CoT paths => More Reasoning steps
Þ CoT Prompting indirectly adjusts the amount of Computation (i.e. the “thinking process/ time”

for the various intermediate steps) for tasks of different level of difficulties
Þ Kick-start the idea of “Inference Time Scaling” aka “Test Time Scaling” !
NB: Need some (can be more than one) mechanisms, e.g. Prompting, Supervised Fine-Tuning, Reinforcement
Learning, Budget-forcing, etc, to induce CoT kind of behavior for a LLM !

The so-called “Inference-Time Scaling” - and its Synonyms

Type 2 Approaches:

Teach LLMs to Reason by expanding the WIDTH of the exploration space

Issues with Chain-of-Thought approach

v Generating intermediate steps (i.e. CoT approach) are helpful BUT are they producing the
correct direct answers (i.e. being an unbiased estimator) ?

► After all, LLMs is still (merely) a probabilistic, inference model predicting the next token !

To get the right answer, we need to take one-step further:

Luckily:

Thus, we can just compute the sum !
How to compute the sum then ? Via Sampling !
But how to reduce Sampling Variance so that we can get the right answer faster ?

Asking LLM to generate multiple solutions for a problem before
picking the final answer !

v Should NOT limit the LLM to generate only one solution per problem

v Tell LLM to explore, examine and compare multiple solutions which allows it to
possibly recover from mistakes in a single generation (i.e. only a single CoT path).
Two different variants of this approach:

- Generate multiple candidate End-to-End solutions per problem
- Generate multiple candidate “Next Steps” given the current partial
CoT path (i.e. “partial”, incomplete thought).

Challenge:

v How to select the “Best” choice among multiple candidates ?
- In most cases, NO oracle scorer is available for the LLM at inference time

Improving Step-by-Step Reasoning via Self-Consistency Checks !
Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

Self-Consistency (SC): Select the Response w/ the most consistent final answer

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

NB: The selection is only based on the final answer.
The reasoning paths do NOT need to be the same across different sampled responses

Self-Consistency (SC) Check

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

GSM8K SOTA with only 8 examples

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

How many more examples are needed for Fine-tuning to be
comparable to CoT+SC ?

Cobbe et al. Training Verifiers to Solve Math Word Problems. arXiv:2110.14168 [cs.LG], 2021.

More Benchmark Results of using CoT+SC
to Solve High-School Math problems

Lewkowycz et al., 2022. Solving Quantitative Reasoning Problems With Language Models.
Xuezhi Wang et al., Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

SC performance scales with more samples

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

v Beam search: Keep Top-K paths with the highest probabilities in the Decoding process

v Ensemble baselines: apply greedy decoding for all prompt variants of a problem

v Self-Consistency (SC) uses sampling scales with more samples:
- The sampling method needs to ensure response diversity, e.g., using a high temperature,

nucleus sampling etc.

Sampling Diverse Responses is crucial for good SC performance

More Benchmark Results of using CoT+SC
to Solve High-School Math problems

Why does Self-Consistency (SC) work ?

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

Why does Self-Consistency (SC) work ?

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

More consistent, more likely to be correct

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

Limitation of SC: require an answer extraction process

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou.
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023.

How to apply Self-Consistency check on “free-form” answers ?

Universal Self-Consistency (USC)
Ask LLMs to self-select the most consistent answer

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash, Charles Sutton, Xuezhi Wang, Denny Zhou.
Universal Self-Consistency for Large Language Model Generation. arXiv:2311.17311 [cs.CL], ICL@ICML 2024.

Universal Self-Consistency (USC):
Ask the LLM to perform consistency-based selection

Universal Self-Consistency (USC) check

Performance of Universal Self-Consistency

Best-of-N with Learned Verifier
STEPS:

1. Fine-Tune Verifier LM

2. Sample N answers

3. Select the Best answer according to the Verifier

Train LLM Rankers to further improve Consistency-based Selection

Two types of LLM-based Verifiers / Reward models:

v Outcome-supervised Reward Model (ORM): Verify at the (final) solution/ outcome level

v Process-supervised Reward Model (PRM): Verify at the Step-level for each solution

References: Cobbe et al., Training Verifiers to Solve Math Word Problems, 2021.
Lightman et al., Let’s Verify Step by Step, 2023.

(Strong) LLM-based Verifiers outperform Consistency-based selection

v Process-supervised Reward
Model (PRM) scales better with
more samples

BUT:

v Performance highly dependent
on verifier quality

v Same verifier may not
generalize across different tasks

So far: Response Selection only after Full responses are generated

Þ Does not fully utilize Step-wise scoring

v LLM + Tree search: Prioritize the exploration of more promising partial solutions !

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurIPS 2023.

Tree-of-Thought (ToT) Example: Game of 24

At Each Step:

v Thought Generation: Prompt the LLM to propose possible next ”thinking” steps

v Thought Evaluation: Prompt the LLM to evaluate how promising the current state is

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurIPS 2023.

Voting-based State Evaluation

LLM selects the best state among candidates:

v LLM votes multiple times, then selects the majority vote as the final choice

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurIPS 2023.

Tree-of-Thought (ToT) Performance for Game of 24

v ToT w/ Breadth-First Search (BFS) scales better than Standard Prompting and CoT
w.r.t. Token Budget

v One should try to integrate more advanced search algorithms, e.g. Monte-Carlo Tree
Search (MCTS)

- But need a good LLM + Prompt design for Self-evaluation !

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurIPS 2023.

Summary of Type 2 approaches (expanding Width of Exploration)

v We can further scale the inference-time compute by sampling multiple branches in the
solution space

v Consistency-based selection is simple, effective and generally applicable
- Self-Consistency: Marginalize out Reasoning Paths and Select based on the final answer
- Code generation: Reranking based on Execution Consistency

v When LLM Self-evaluation works well: Search in the Partial Solution space can help !

Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurIPS 2023.

Type 3 Approaches:

Iterative Self-improvement by increasing the Depth of Exploration Path(s)
before reaching the final solution

Motivation for increasing the LLM’s Depth of Exploration Path

v Even Humans often make (sometimes trivial) mistakes at first thought

v Although sampling multiple solutions (i.e. increase the width of exploration space) can
reduce mistakes by considering more than one single prediction, it is still suboptimal
because

- NO feedback loop to correct the mistakes after a complete solution is generated
In contrast,

- under the Inference-time self-improvement approach, LLM iteratively improves
its own response for the given task.

Self-Refine

Basic idea: prompt an LM to critique/revise its own outputs iteratively.

Reflection (Reflexion) and Self-Refine

v LLM generates feedback on its output. Use external evaluation (oracle) when available.

v LLM self-refines its output given both internal feedback and external evaluation.
Shinn et al., Reflexion: Language Agents with Verbal Reinforcement Learning, NeurIPS 2023.
Madaan et al., Self-Refine: Iterative Refinement with Self-Feedback, NeurIPS 2023.

Initial Findings regarding Performance of Self-Refine

Seems like it works reasonably well on easy tasks like chatbot harmlessness or summarization.

Self-reflection and Self-refinement work ONLY WHEN
Good External Evaluation (Oracle) is available

v Reflexion improves on tasks with effective evaluation heuristics, e.g., ALFWorld.

v On HotPotQA: the external evaluation gives the answer correctness at each reflection
step.

Shinn et al., Reflexion: Language Agents with Verbal Reinforcement Learning, NeurIPS 2023.

Self-correction without Oracle feedback hurts Reasoning Performance

v Oracle: utilize the ground truth
answer for correction

v Without oracle feedback, LLMs
need to judge the response
correctness themselves

v LLMs can wrongly judge the
correctness of its predictions,
leading to worse performance
after self-correction

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet, ICLR 2024.

General-Purpose Feedback Prompt variants DO NOT improve Performance

v Edit the feedback prompt affects the self-correction behavior (tendency to keep the initial
response), but none of them significantly improves over the initial performance.

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet, ICLR 2024.

Luckily, some applications do have an Oracle available and can be leveraged !

v Code execution provides natural external feedback: humans often debug better within an IDE !

v Simple: a short universal feedback
for all wrong code

v Unit test feedback: include the
execution results

v Code explanation: line-by-line
explanation of the implementation

v Trace: line-by-line simulation of the
execution trace

Self-Debugging with different Feedback Formats

Self-Debugging Performance

v Self-debugging consistently boosts the performance across different LLMs

v More informative feedback further improves the debugging performance

Multi-agent Debate
Basic idea: prompt multiple LM instances to debate each other to find the answer.

BUT Multi-agent (LLM) debate performs worse than Self-consistency

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. ICLR 2024.
Du et al., Improving Factuality and Reasoning in Language Models through Multiagent Debate, 2023.

v Multi-agent debate: prompt the
LLM to review multiple responses
and give an updated one.

Vs.
v Self-consistency selects the

response with the most common
final answer.

v With the right prompt, Multi-agent
does not outperform SC

v Without a good evaluator, multi-
agent debate does not effectively
utilize the token budget.

Trade-off Analysis of Inference-time (aka Test-time) Scaling:

How to best Utilize the Token Budget for the LLM ?

Type 1 vs Type 2 vs Type 3 approaches to make LLM reason ?

Charlie Snell, Kelvin Xu, Jaehoon Lee, Aviral Kumar, Scaling LLM Test-Time Compute Optimally Can be More Effective than Scaling Model Parameters, Aug 2024.

v Giving AI additional test-time compute can greatly improve performance.
v However, previous demonstrations are mainly limited to specific tasks.

Clear Evidence of Inference-Time (Test-Time) Scaling

How to best Utilize the Token Budget in General ?

v How to balance inference-time budget for generating multiple samples (solutions
and/or partial solutions) ?
v Generating in Parallel vs. Sequential ?

v In general, different problems may benefit from different inference-time compute
strategies

v One could obtain N answers and find the most common one (i.e. Self-Consistency, or Universal Self-
Consistency)

v One could do Best-of-N with a Learned Verifier

v One could use the LLM to revise and correct it’s own responses iteratively

v …

All these techniques induce the use of more token budget to generate the final
solution!

Experimental Setup

Q: Given a challenging input query, how can we enable language models to most effectively make use of

additional computation at inference (test) time so as to improve the accuracy of their response?

There are many different ways we could utilize test-time compute.

● We could generate N solutions and then apply Self-Consistency / USC criteria for selection.

● We could do best of N with a learned verifier.

● We could use the model to revise and correct it’s own responses iteratively.

● etc…

Different problems may benefit from different test-time compute strategies.

Unifying Perspective on Test-time Computation: Proposer and Verifier

● Try to scale test-time compute via two mechanisms: modifying the LM’s inputs or its outputs.

○ Input level: modify the prompt.

v Improve the proposal distribution from which outputs are sampled.

e.g. train the model to revise proposals rather than sampling them all in parallel.

○ Output level: guide outputs in some way. For examples:

v Search against intermediate steps in a verifier.

v Sample N outputs in parallel, N revisions, or some balance of these two.

○ Sampling in parallel may act as a global search for the right high-level approach.

■ Better for hard problems.

○ Sampling revisions might be more useful if the answer is already on the right track.

■ Better for easy problems.

=> Different problems may benefit from different test-time compute strategies.

Compute Optimal Scaling of Inference-time Compute

Select the best possible test-time compute hyper-params for a given question and test-time budget.

Hyper-parameters could be:

● What search algorithm to use (e.g. best-of-N verses beam search).
● Whether to sample N answers in parallel of N revisions in sequence.

Question Difficulty for Compute Optimal Scaling
Use question difficulty as a sufficient statistic for practically estimating compute

optimal scaling.

v For a given difficulty level, select the best performing hyperparameters.

Oracle difficulty

○ Sample 2048 outputs per question and bin questions into 5 quantiles by how many

of the samples were correct.

Predicted difficulty

○ Do the same thing but use a verifier’s predicted correctness score instead of

ground truth correctness information.

Scaling Inference-Time Compute with Verifiers

Training a Process Based Verifier
● For search, the verifier should score each step in a solution.

○ Prior work [lightman et al. 2023] used human labels of per-step correctness for supervision.
○ This work instead follows the approach from MathShepard [wang et al. 2024] to learn a value

function.

Comparing Search Methods

● Beam search performs best at small budgets.

● At large budgets, Best-of-N performs similarly

to beam search.

● Lookahead generally underperforms due to the

high cost of the lookahead rollouts.

● All verifier search methods outperform the

majority baseline.

Performance Breakdown by Question Difficulty

● On easy questions, beam-search shows some

signs of over-optimization.

● On medium/hard questions, beam-search

outperforms best-of-N.

● On the hardest questions, all methods struggle.

By selecting the best performing search algorithm at each difficulty level, we can

nearly outperform best-of-N using up to 4x less test-time compute.

Compute Optimal Search

Takeaways for Scaling Inference-time Compute With Verifiers

● The efficacy of a search method depends on the budget and the question.

● Beam search is more effective on harder questions and at lower budgets.

● Best-of-N is more effective on easier questions and at higher budgets.

● By selecting the best setting for each question, we can nearly outperform

best-of-N using up to 4x less test-time compute.

Scaling Inference-time Compute With Revisions

Fine-tuning a Revision Model

Fine tune a model to iteratively revise answers

in context.

Procedure:

1. Sample N solutions to a question from the

base LM.

2. Create a chain of incorrect answers

followed by a correct answer.

3. Finetune the model to generate the correct

answer conditioned on the chain.

Using a Verifier with the Revision Model

Sampling N outputs in sequence from the model outperforms sampling N in parallel.

Comparing Sequential and Parallel Sampling

In some cases there is an ideal ratio of sequential to parallel test-time compute.

Comparing Sequential and Parallel Sampling

This ideal ratio also depends on the difficulty of the question at hand.

Comparing Sequential and Parallel Sampling

v By selecting the best performing ratio at each difficulty level, we can outperform

parallel sampling using up to 4x less test-time compute.

Scaling Inference-time Compute With Revisions

Takeaways for Scaling Inference-time Compute With Revisions

● There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g.

standard best-of-N) test-time computation.

● The ideal ratio depends on the compute budget and the question at hand.

● Easier questions benefit more from sequential revisions.

● Harder questions perform best with an ideal ratio of sequential and parallel.

● By optimally selecting the ideal ratio, we can outperform parallel sampling

using up to 4x less test-time compute.

Trade-off Inference-time with Pretraining Compute
Can scaling test-time compute be more effective than scaling parameters?

● Model is pretrained with X FLOPs and we will run Y FLOPs of inference.

● If we increase the FLOPs budget by a factor of M (e.g. budget = M(X+Y)),

should we spend it on scaling parameters or on scaling pretraining?

● We can either increase the parameters by a factor of M.

● Or we can keep the parameters fixed and multiply our inference budget by:

v Evidence shown we can trade test-time compute with Training-time Compute
v However, previous demonstrations are mainly limited to specific tasks.

Trading Test-Time Compute with Train-time Compute

Exchanging Inference-time and Pretraining Compute

Can scaling test-time compute be more effective than scaling parameters?

● Model is pretrained with X FLOPs and we will run Y FLOPs of inference.

● If we increase the FLOPs budget by a factor of M (e.g. budget = M(X+Y)),

should we spend it on scaling parameters or on scaling pretraining?

● We can either increase the parameters by a factor of M.

● Or we can keep the parameters fixed and multiply our inference budget by:

This depends on a ratio of pretraining to inference tokens. We refer to the inverse of this ratio as R.

Exchanging Inference-time and Pretraining Compute

Can scaling test-time compute be more effective than scaling parameters?

● Model is pretrained with X FLOPs and we will run Y FLOPs of inference.

● If we increase the FLOPs budget by a factor of M (e.g. budget = M(X+Y)),

should we spend it on scaling parameters or on scaling pretraining?

● We can either increase the parameters by a factor of M.

● Or we can keep the parameters fixed and multiply our inference budget by:

This depends on a ratio of pretraining to inference tokens. We refer to the inverse of this ratio as R.

Exchanging Inference-time and Pretraining Compute

Can scaling test-time compute be more effective than scaling parameters?

● Model is pretrained with X FLOPs and we will run Y FLOPs of inference.

● If we increase the FLOPs budget by a factor of M (e.g. budget = M(X+Y)), should

we spend it on scaling parameters or on scaling pretraining?

● We can either increase the parameters by a factor of M.

● Or we can keep the parameters fixed and multiply our inference budget by:

This depends on a ratio of pretraining to inference tokens. We refer to the inverse of this ratio as R.

v On easy/medium difficulty questions, or in settings with low inference requirements,

scaling test-time compute can be preferable to scaling parameters.

Exchanging Inference-time and Pretraining Compute

Cost Comparison:
Test-time Scaling w/ Small models Vs. Large models w/o Test-time Scaling

Takeaways / Discussion

Using fairly simple methodology it is found that scaling LLM inference-time
compute can greatly improve performance, and in some cases it can outperform
scaling parameters.

There is much room for future work to:

1. Improve upon the techniques and explore alternative approaches to scaling
test-time compute.

2. Conduct additional analysis.

The State of LLM Reasoning Models [circa March 2025]

14
1Recent Research on Reasoning in LLMs (circa 2023)

Source: Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. 2023.

14
2

Taxonomy of LLM-Reasoning Approaches (circa July 2024)

Source: Aske Platt et al., Reasoning with Large Language Models: a Survey, July 2024.

https://arxiv.org/abs/2407.11511

Taxonomy of LLM-Reasoning Approaches (circa July 2024)

Source:
Aske Platt et al. 2024.

https://arxiv.org/abs/2407.11511

Reasoning as yet another “Specialized” skills for Foundation Models

Reasoning models = Models which are better in solving complex tasks such as puzzles, advanced math, coding
challenges that required the introduction of more intermediate steps (aka “thinking”). By “specialization”, it means
such skill will NOT replace other LLM applications as shown in the figure. Specialized means ”Reasoning” should
not be the only way LLMs use to solve problems due to inevitable trade-offs (e.g. in resource consumption, latenc)

Strength and Weakness of a “Reasoning” Model
and when do we need one ?

Highlight of LLMs in 2024: The Advancement of Reasoning Models

Source: https://openai.com/index/learning-to-reason-with-llms/

OpenAI o1 started to achieve impressive performance across various challenging reasoning
tasks in math, coding, STEM, etc.

Effectiveness of Inference-Time Scaling for LLM Reasoning confirmed in 2024

Source: https://arcprize.org/blog/oai-o3-pub-breakthrough/

Performance improves with more inference-time compute

v O3 achieved 87.5%
accuracy on ARC-AGI,
with >$1k test-time cost
to solve each task

v Other existing LLMs
achieved <25% accuracy
if no special inference-
time techniques were
used

Realizing LLM Reasoning via Inference-Time Scaling

Sources:
Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.
Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021

v Core Idea: Trigger the LLM to generate one or more LONG Chain-of-
Thought (CoT) Path of Exploration via one or more of the following:

• Few-Shot CoT Prompting
• Instruction Prompting
• Instruction Tuning
• Reinforcement Learning

Recent Work on Scaling Inference-time Compute

● GPTo1 / Deepseek R1 shows that:
○ RL optimized Chain of Thought can be a highly effective way to scaling test-time

compute.

Realizing LLM Reasoning via Inference-Time Scaling

v Core Idea: Teach/ Force the LLM to generate one or more LONG Chain-of-Thought
(CoT) Paths of Exploration using one or more of the following ways:

At least
Four different ways to
create a Reasoning
LLM

(e.g. s1, distilled DeepSeek R1)

Training DeepSeek-R1-Zero via “Pure” Reinforcement Learning

Training DeepSeek-R1-Zero via “Pure” RL: The “Aha” moment

Training DeepSeek-R1 via Supervised Fine-Tuning (SFT) + RL

Performance Comparison of
DeepSeek-R1-Zero (Pure RL) via DeepSeek-R1 (SFT + RL)

Training DeepSeek-R1-Distill* via SFT + Distillation

Summary

Training Process
of DeepSeek R1,
R1-Zero, and
R1-Distill* (all
are Reasoning
models)
from the
General Purpose
DeepSeekV3
model

More Details on the Training Process of
DeepSeek R1-zero, R1 (Reasoning models) from General Purpose DeepSeekV3 model

Minimal Recipe for Reasoning & Test-time Scaling

Minimal Recipe for Reasoning & Test-time Scaling

s1: Simple Test-Time Scaling [N. Muennihoff Jan/Mar 2025]

Procedure for creating the s1 model:

1. Create a curated SFT dataset, s1K, (a careful selection of rather difficult STEM
questions, e.g. PhD Qualifying exam questions from top schools) containing 1000
training Questions paired with Answers + Reasoning Traces distilled from:

Gemini 2.0 Flash Thinking Experimental (for s1) or DeepSeek R1 (for s1.1)

2. Supervised Fine-tune the Qwen2.5-32B-Instruct LM on the s1K dataset (No RL at all)

3. Control the amount of Test-time compute consumed by the trained model via the
following Budget Forcing mechanism:

- if the model spends more thinking tokens than a preset limit, force it to end ;
- if the model finishes too early (not thinking long enough), append “Wait” to the model’s

current thinking trace and suppress the generation of the end-of-thinking token.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, Tatsunori Hashimoto,
s1: Simple test-time scaling, Jan 2025. https://arxiv.org/abs/2501.19393

https://arxiv.org/search/cs?searchtype=author&query=Muennighoff,+N
https://arxiv.org/search/cs?searchtype=author&query=Yang,+Z
https://arxiv.org/search/cs?searchtype=author&query=Shi,+W
https://arxiv.org/search/cs?searchtype=author&query=Li,+X+L
https://arxiv.org/search/cs?searchtype=author&query=Fei-Fei,+L
https://arxiv.org/search/cs?searchtype=author&query=Hajishirzi,+H
https://arxiv.org/search/cs?searchtype=author&query=Zettlemoyer,+L
https://arxiv.org/search/cs?searchtype=author&query=Liang,+P
https://arxiv.org/search/cs?searchtype=author&query=Cand%C3%A8s,+E
https://arxiv.org/search/cs?searchtype=author&query=Hashimoto,+T

Creating the s1K dataset: Data Collection followed by Data filtering

Distilling Reasoning Traces & Answers

Composition of s1K dataset & Performance of the s1-32B model

Test-time Scaling via Budget Forcing for the s1 model

Correlation b/w Tokens-generated and Response Accuracy by s1

Ablation: Sequential and Parallel Test-time Scaling

Ablation study on the choice of the Budget-Forcing string for s1

Comparing s1-32B’s Performance with other Reasoning models

Other Recent Research on
Scaling Inference-time Scaling

Recent Work on how to determine Inference-time Compute

v Recent work shows that models can be fine-tuned to cheaply assess difficulty.
Mehul Damani et al., “Learning How Hard to Think: Input-Adaptive Allocation of LM Computation,” Oct 2024, https://arxiv.org/pdf/2410.04707

Less (but Good Training Examples) is More for Reasoning

Yixin Ye*, Zhen Huang*, et al., “LIMO: Less is More for Reasoning”, Feb 2025, https://arxiv.org/pdf/2502.03387

LIMO vs. Reinforcement Learning Scaling

Yixin Ye*, Zhen Huang*, et al., “LIMO: Less is More for Reasoning”, Feb 2025, https://arxiv.org/pdf/2502.03387
Refer to some additional commentary from https://news.ycombinator.com/item?id=42991676

https://arxiv.org/pdf/2502.03387

